FACULTY OF INFORMATICS

B.E. 3/4 (IT) I - Semester (Main) Examination, November 2013

Subject : Theory of Automata

Time: 3 hours
Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)

1. Design a DFA for strings containing even number of zeroes.
2. Define \in-closure of a state.
3. What is halting problem?
4. Write the regular expression denoting the strings that begin with a and end with a b over $\Sigma=\{a, b\}$.
5. What is recursively enumerable language?
6. Define parse tree and draw the parse tree for sting aabbab using the grammar.

$$
\begin{aligned}
& S \rightarrow a B \mid b A \\
& A \rightarrow a S|b A A| a \\
& B \rightarrow b S|a B B| b
\end{aligned}
$$

7. What do you mean by a) PDA by empty stack b) PDA by final state
8. Give the context-free grammar that generates the set of palindrome strings. Also derive a sample string using this grammar.
9. Define Homomorphism. Give an example.
10.What is inherently ambiguous grammar?

$$
\begin{equation*}
\text { PART - B (5 x } 10=50 \text { Marks }) \tag{3}
\end{equation*}
$$

11.a) Convert the given NFA to DFA.

b) Differentiate between NFA and DFA.
12.a) State and prove pumping lemma for context free languages.
b) Prove that the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context free language.
13.a) Design a PDA for language $L=\left\{w c w^{r}\right.$ where $\left.w \in(a+b)^{*}\right\}$.
b) Give the instantaneous descriptions for string aabcbaa.
14. Design Turing machine for language $L=a^{n} b^{n} c^{n}$ where $n \geq 1$. Justify your design with a suitable example.
15.a) Explain about undecidable problems.
b) Explain about NP-complete problem.
16. Convert the following grammar to Chomsky normal form.

$$
\begin{align*}
& S \rightarrow O A o|1 B 1| B B \tag{10}\\
& A \rightarrow C \\
& B \rightarrow S \mid A \\
& C \rightarrow S \mid \in
\end{align*}
$$

17. Write short notes on:
a) Multi-stack machine
b) Applications of Finite Automata
