FACULTY OF INFORMATICS

B.E. 3/4 (IT) I – Semester (Main) Examination, November 2013

Subject : Theory of Automata

Time : 3 hours

Max. Marks: 75

(3)

(3)

(6)

(4)

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

1.	Design a DFA for strings containing even number of zeroes.	(2)
2.	Define \in – closure of a state.	(2)
3.	What is halting problem?	(2)
4.	Write the regular expression denoting the strings that begin with a and end with a b)
	over $\Sigma = \{a, b\}$.	(2)
5.	What is recursively enumerable language?	(2)
6.	Define parse tree and draw the parse tree for sting aabbab using the grammar.	(3)
	S → aB bA	

$$A \rightarrow aS \mid bAA \mid a$$

 $B \rightarrow bS | aBB | b$

7. What do you mean by a) PDA by empty stack b) PDA by final state

- 8. Give the context-free grammar that generates the set of palindrome strings. Also derive a sample string using this grammar. (3)
 9. Define Homomorphism. Give an example. (3)
- 10. What is inherently ambiguous grammar?

PART – B $(5 \times 10 = 50 \text{ Marks})$

11.a) Convert the given NFA to DFA.

b) Differentiate between NFA and DFA.

- 12.a) State and prove pumping lemma for context free languages. (5) b) Prove that the language L = $\{a^n b^n c^n \mid n \ge 1\}$ is not a context free language. (5) 13.a) Design a PDA for language L = {wcw^r where $w \in (a+b)^*$ }. (6) b) Give the instantaneous descriptions for string aabcbaa. (4) 14. Design Turing machine for language $L = a^n b^n c^n$ where $n \ge 1$. Justify your design with a suitable example. (10)15.a) Explain about undecidable problems. (5)b) Explain about NP-complete problem. (5)16. Convert the following grammar to Chomsky normal form. (10) $S \rightarrow OAo | 1B1 | BB$ A →C $B \rightarrow S \mid A$ $C \rightarrow S \mid \in$
- 17. Write short notes on :
- a) Multi-stack machine(5)b) Applications of Finite Automata(5)