FACULTY OF ENGINEERING

B.E. 3/4 (CSE) I - Semester (Main) Examination, November 2013

Subject: Automata Languages and Computation

Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)

1. Obtain a DFA to accept strings of 0 's, is and 2 's beginning with a ' 0 ' followed by odd no. of 1 's and ending with a ' 2 '.
2. Obtain a regular expression to accept strings of a's and b's whose length is either even or multiples of 3 or both.
3. If $\sum=\{0,1\}, \Gamma=\{1,2,3\}, h(0)=3122, h(1)=132$

What is $(0+1)^{*}(00)^{*} ?$
4. Consider the following grammar

$$
\mathrm{S} \rightarrow \mathrm{aCa}
$$

$\mathrm{C} \rightarrow \mathrm{aCa\mid b}$
What is the language generated by this grammar?
5. Define Chomsky Normal Form (CNF). 2
6. Prove that reversal of a CFL is also an CFL. 3
7. What do you understand by the term LBA? 3
8. Define turning machine. How a TM accepts a language? 3
9. Define MPCP. 2
10. What is universal language? 2

PART - B (50 Marks)
11.a) Construct a DFA to accept decimal strings divisible by 3 . 5
b) Convert the FA to regular expression. 5

12.a) Prove that $(00 * 1)^{*} 1=1+0(0+10)^{*} 11$. 5
b) State and prove pumping lemma for CFL. 5
13. Obtain a TM to accept a palindrome consisting of a's and b's of any length.
14.a) Convert the following grammar into GNF.
$A \rightarrow B C$
$B \rightarrow C A / b$
$C \rightarrow A B / a$
b) Obtain a CFG for the following PDA.

$$
\begin{aligned}
& \delta\left(q_{0}, a, z\right)=\left(q_{0}, A Z\right), \quad \delta\left(q_{0}, a, A\right)=\left(q_{0}, A\right) \\
& \delta\left(q_{0}, b, A\right)=\left(q_{1}, \in\right), \quad \delta\left(q_{1}, \in, z\right)=\left(q_{2}, \in\right)
\end{aligned}
$$

15.a) Prove that PCP is undecidable.
b) State PCP and find whether given instances of PCP has solution or not.
16.a) Obtain a TM to multiply two unary no's separated by the delimiter ' 1 '.
b) Consider the CFG $S \rightarrow A_{1} A_{2}\left|A_{2} A_{3}, A 1 \rightarrow A_{2} A_{1}\right| 0$

$$
\mathrm{A}_{2} \rightarrow \mathrm{~A}_{3} \mathrm{~A}_{3}\left|1, \mathrm{~A}_{3} \rightarrow \mathrm{~A}_{1} \mathrm{~A}_{2}\right| 0
$$

Test 10010 is a member or not using CYK algorithm

17. Minimize the following DFA :

	0	1
\rightarrow A	B	A
B	A	C
C	D	B
${ }^{*} \mathrm{D}$	D	A
E	D	F
F	D	E
G	F	G
H	G	D

