
FACULTY OF INFORMATICS

B.E. 2/4 (IT) I – Semester (Main.) Examination, December 2013

Subject: **Discrete Mathematics**

Time:	3 Hours Max.Marks : 75	
Note: Answer all questions from Part – A. Answer any <u>five</u> questions from Part – B. PART – A (25 Marks)		
2. Co 3. Wr 4. Ho 5. Fin 6. Fin by 7. De 8. De 8. De 9. Fin	PART – A (25 Marks) that is the value of quotient 'q' and the remainder 'r' when $a = 58^{237}$ and $a = 58^{168}$ using division algorithm. Instruct the truth table for $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$. ite the recursive algorithm for Fibonacci numbers. w many different strings can be made by reordering the letters of the word 'VICTORY'? ad the solutions to the recurrence relation with the initial conditions $a_0 = 2$, $a_0 = 5$, $a_n = 6a_{n-1} - 11a_{n-2}$. Ind the number of positive integers not exceeding 100 that are not divisible 5 or by 7. fine isolated vertex, pendent vertex, and pseudo graph. fine colouring of a graph. What do you mean by chromatic number of graph? Ind the minterm that equals '1' $a_1 = x_3 = 0$ and $x_2 = x_4 = x_5 = 1$ and equal '0' otherwise.	
	aw the K-maps for (a) $xy + \overline{x}y$ (b) $x\overline{y} + \overline{x}y$ (c) $x\overline{y} + \overline{x}y + \overline{x}\overline{y}$ PART – B (50 Marks)	3
(b) 12.(a) (b) 13.(a) (b) 14.(a)	Use rule of inference to show that the hypothesis "Randy works hard", "If Randy works hard, then he is dull boy", and "If Randy is a dull boy, then he will not get job" imply the conclusion "Randy will not get the job". Check for tautology $[(pvq) \land (p \rightarrow r) \land (q \rightarrow r)] \rightarrow r$ Use mathematical induction to show that $\bigcap_{j=1}^{n} A_j = \bigcup_{j=1}^{n} \overline{A}_j$ How many ways are there to select 12 countries in the United Nations to serve on a council if 3 are selected from a block of 45, 4 are selected from a block of 57, and the others are selected from the remaining 69 countries? Find the recurrence relations for the number of ways to climb 'n' steps if the person climbing the steps can take one step or 2 steps at a time. There are 345 students at a college who have taken a course in calculus, 212 who have taken a course in discrete mathematics, and 188 who have taken courses in both calculus and discrete mathematics. How many students have taken a course in either calculus or discrete mathematics?	6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	u_1 u_2 u_3 u_4 v_3 v_4	
	Describe prim's algorithm, with an example. Minimize the function f = $\sum_{m} (0.5, 10, 15) + \sum_{d} (1, 7, 11, 13)$	5
	where \sum_{d} denotes don't care minterms using map techniques.	5
(b) 17.(a)	Show that K_n has a Hamilton circuit when ever $n \ge 3$. Discuss the depth first search algorithm for spanning trees. Find the solution of the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$ Define inorder traversal in an ordered rooted tree.	5 5 5 5

Give the inorder traversal of the above tree.