FACULTY OF INFORMATICS

B.E. 2/4 (IT) I – Semester (Main) Examination, November 2013

Subject : Digital Electronics and Logic Design

Time : 3 hours

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

 Using algebraic manipulation prove that (x + y) (x + y) = x. What are the universal gates? Why they are called so? Neatly draw the 3 input look-up table (LUT) and explain it. What is a combinational circuit? Give some examples. Write VHDL code for D flip-flop. Define flip-flop, register & shift register. Differentiate between Moore FSM & Melay FSM. Define state diagram, state table & state assignment. Write short notes on clock skew. Write the steps involved in synthesis process. 	2 3 2 3 2 3 2 3 3 2
PART – B (50 Marks)	
11.a) Simplify the four variable function using K-map & implement using basic gates. $f(x_1,x_2,x_3,x_4) = \sum m(1,4,5,6,7,10,11,14).$	6
b) Find the complement of the function $f(x_1,x_2,x_3) = x_1+x_2x_3$ and show that $f + \overline{f} = 1$	4
12.a) Draw the general structure of FPGA and show how it can be programmed using JTAG cable.	6
b) What is a macro cell? Give the significance of macro cell in CPLD architecture.	4
13.a) Explain the operation positive type master slave edge trigged D flip-flop.	5
b) Design a 3-bit down counter. Draw timing diagram.	5
14. Design a counter circuit using sequential circuit approach.	10
15. Explain the ASM chart and data path circuit for "Divider Control Operation".	10
16.a) Reduce the following function to min-cost SOP and write VHDL code for reduced expression. $f(x_1,x_2,x_3,x_4) = \sum m(1,4,7,14,15) + d(0,5,9)$	7
b) Write short notes on programmable logic devices.	3
17.a) Explain Shannon's expansion theorem.b) Flip-flops Vs Latchesc) What are the elements of ASM chart?	4 3 3

Max. Marks : 75