FACULTY OF ENGINEERING

	-
B.E. 2/4 (CE/EE/Int/ECE/M/P/AE/CSE) I – Semester (Main.)	Examination, December 2013
Subject: Mathematics – III	

Time: 3 Hours

Max.Marks : 75

Note: Answer all questions from Part – A. Answer any <u>five</u> questions from Part – B.

1.	Form a partial differential equation by eliminating the arbitrary function f from	
0	$z = e^{ax+by} f(ax-by).$	
Ζ.	f(x,p) = $q(y,q)$.	2
3.	Find a_o in the Fourier series expansion of $f(x) = e^{-x}$ in (-1,1).	2
4	If $y = \sum_{n=1}^{\infty} b_n \sin ny$, $0 < y < - then find b$	2
4.	If $\mathbf{x} = \sum_{n=1}^{n} \mathbf{D}_n$ sin fix, $0 < \mathbf{x} < \pi$, then find \mathbf{D}_n .	3
5.	Solve $py^3+qx^2 = 0$ by the method of separation of variables.	2
6.	Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0,y) = 8e^{-3y}$.	3
7.	Find the iterative formula to find \sqrt{N} using Newton-Raphson method.	2
8.	If $f(1) = -3$, $f(3) = 9$, $f(4) = 30$ and $f(6) = 132$, then find $f(x)$.	3
9.	Find the Z transform of {n a ⁿ }.	3
10.	. Find the convolution $\{2^n * 3^n\}$.	2
	PART – B (50 Marks)	
11.	.(a) Solve $y^2p - xyq = x (z-2y)$.	5
	(b) Solve $q(q^2+s) = pt$ by Monge's method.	5
12.	Find the Fourier series expansion for $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ and hence	
	find the sum $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \dots$	10
	1^2 3^2 5^2	
13	Solve $\frac{\partial u}{\partial r^2} + \frac{\partial u}{\partial v^2} = 0, \ 0 < x, \ y < \pi$ subject to $u(0,y) = u(\pi, y) = u(x, \pi) = 0$	
	and $u(x,0) = \sin^2 x$.	10
14.	(a) Solve the system of equations $4x - 3y - 9z + 6w = 0$, $2x + 3y + 3z+6w = 6$ and $4x - 21y - 39z - 6w = -24$ by Gauss elimination method.	5
	dv _ 2	-
	(b) Find the approximate value of $y(1.3)$ for $\frac{dy}{dx} = -2xy^2$, $y(1) = 1$ using Euler's	
	method.	5
15	.(a) Find the inverse Z transform of $\frac{7z-11z^2}{(z-1)(z-2)(z+3)}$.	5
	(b) State and prove convolution theorem of Z transforms.	5
16.	Solve $pxy + pq + qy = yz$ by Charpit's method.	10
17.	.(a) Find the Fourier series expansion of $f(x) = \cos x $ in $[-\pi, \pi]$.	5
	(b) Find $\frac{dy}{dx}$ at x = 0.5 from the following table.	5
	x:0123y:131540	