FACULTY OF ENGINEERING

B.E. $2 / 4$ (CE/EE/Int/ECE/M/P/AE/CSE) I - Semester (Main.) Examination, December 2013 Subject: Mathematics - III
Time: 3 Hours
Max.Marks : 75
Note: Answer all questions from Part - A. Answer any five questions from Part - B.
PART - A (25 Marks)

1. Form a partial differential equation by eliminating the arbitrary function f from
$z=e^{a x+b y} f(a x-b y)$.
2. Reduce the partial differential equation $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$ to the form $\quad f(x, p)=g(y, q)$.
3. Find a_{o} in the Fourier series expansion of $f(x)=e^{-x}$ in $(-1,1)$. 2
4. If $x=\sum^{\infty} b_{n} \sin n x, 0<x<\pi$, then find b_{n}. 3
5. Solve $\mathrm{py}^{3}+q x^{2}=0$ by the method of separation of variables. 2
6. Solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}, u(0, y)=8 e^{-3 y}$. 3
7. Find the iterative formula to find \sqrt{N} using Newton-Raphson method. 2
8. If $f(1)=-3, f(3)=9, f(4)=30$ and $f(6)=132$, then find $f(x)$. 3
9. Find the Z transform of $\left\{n a^{n}\right\}$. 3
10. Find the convolution $\left\{2^{n} * 3^{n}\right\}$. 2

PART - B (50 Marks)
11.(a) Solve $y^{2} p-x y q=x(z-2 y)$. 5
(b) Solve $q\left(q^{2}+s\right)=p t$ by Monge's method. 5
12. Find the Fourier series expansion for $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$ and hence find the sum $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$
13. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x, y<\pi$ subject to $u(0, y)=u(\pi, y)=u(x, \pi)=0$ and $u(x, 0)=\sin ^{2} x$.
14.(a) Solve the system of equations $4 x-3 y-9 z+6 w=0,2 x+3 y+3 z+6 w=6$ and $4 x-21 y-39 z-6 w=-24$ by Gauss elimination method.
(b) Find the approximate value of $y(1.3)$ for $\frac{d y}{d x}=-2 x y^{2}, y(1)=1$ using Euler's method.5
15.(a) Find the inverse Z transform of $\frac{7 z-11 z^{2}}{(z-1)(z-2)(z+3)}$. 5
(b) State and prove convolution theorem of Z transforms. 5
16. Solve $p x y+p q+q y=y z$ by Charpit's method. 10
17.(a) Find the Fourier series expansion of $f(x)=|\cos x|$ in $[-\pi, \pi]$. 5
(b) Find $\frac{d y}{d x}$ at $x=0.5$ from the following table. 5

$x:$	0	1	2	3
$y:$	1	3	15	40

