FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I-Semester (Main) Examination, November 2013

Subject : Basic Circuits Analysis
Time : 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART - A (25 Marks)

1. State and explain superposition theorem. 3
2. What are the properties of incidence matrix? 2
3. Find the value of ' R ' in fig shown in (A) in such a way that maximum power is transferred to it.

4. Write the difference between transient and steady state responses.
5. State and explain the time constant of an R-L circuits. 2
6. Define apparent and average powers. >2
7. Define and explain ABCD parameters of a network. 3
8. What is the condition of reciprocity for hybrid parameters and also the condition of symmetry?
9. Define: Incidence matrix and Tie set. 2
10. Define : Complex frequency, poles and zeros of a transfer function. 3
11.a) For the circuit shown in fig (B), find the node voltages using nodal analysis.

b) Define and classify energy sources.
12.a) Determine the impedance connected across the terminal A \& B in fig (C), for the maximum power transfer. Also find value of max. power transferred.

b) Define self and mutual inductances.
11. Find the response $v(t)$ in the circuit of fid.(D). Also plot it with neat sketches.

14.a) Show that, "when networks are interconnected in series-parallel manner, then the overall h-parameters are the summation of individual h-parameters of networks interconnected".
b) Define reciprocity theorem and explain.
12. For the network shown in fig (E), write a cut-set schedule. Obtain the values of branch voltages and branch currents.

16.a) What the restrictions on the location of pole-zeros of a transfer function, explain?
b) The Laplace transform of current ISs) in a network is given by

$$
I(s)=\frac{3 s}{(s+2)(s+3)}
$$

Plot poles and zeros in the s-plane and hence obtain the time-domain response.
17. Write short notes on :
a) Series and parallel resonances
b) Principle of Duality
c) Zero input response and zero state responses.

