FACULTY OF ENGINEERING

B.E. 2/4 (CSE) I – Semester (Main) Examination, November 2013

Subject : Discrete	Structures
--------------------	------------

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A	(25	Marks)
----------	-----	--------

1.	Construct truth table for the compound statement.	2
	$q \leftrightarrow (\neg pv \neg q)$; where p,q are the primitive statement	
2.	Negate and simplify the compound statement : P \rightarrow (\neg q \wedge r).	3
3.	Determine all of the elements in {n+(1/n) $n \in \{1,2,3,5,7\}$ }.	3
4.	Let A, B $\in \mathbb{R}^2$ where A = {(x, y)/y = 2x + 1}, B = {(x, y)/y = 3x}. Determine A \cap B.	2
5.	Write and explain the properties of Binary Relation.	3
6.	If $ A = n \ge 1$. How many different relations on A are irreflexive? How many are neither reflexive nor irreflexive.	3
7.	Find the general solution for the recurrence relation.	2
	$3a_{n+1} - 4a_n = 0, n \ge 1, a_1 = 5.$	
8.	Define algebraic system. Write its properties.	3
9.	What is subgroup homomorphism? Give its equation.	2
10	What is chromatic number? Find the chromatic number for the following graph (G).	2

PART – B (50 Marks)

11.a) Establish the validity for the following arguments.

 $P \rightarrow (q \rightarrow r)$ PVS $t \rightarrow q$ $\frac{7s}{\therefore 7r \rightarrow 7t}$

Time : 3 hours

b) Prove $\overline{A\Delta B} = \overline{(AUB) \cap \overline{(A \cap B)}}$, where A, B are finite sets.

5

5

..2

12.a) Let f, g : R \rightarrow R, where g(x) = 1 - x + x ² and f(x) = ax + b. If (gof) (x) = 9x ² - 9x + 3, determine a, b.	5
b) Determine the number of positive interms n, $1 \le n \le 2000$, that are not divisible by 2,3,5 or 7.	5
13.a) Determine the sequence generated by the following generating function : $f(x) = x^4 / (1 - x)$.	4
b) Find the co-efficient of x^{50} in $(x^7 + x^8 + x^9 +)^6$.	6
14. Solve the recurrence relation : $a_n^2 - 2_{an-1} = 0 \ n \ge 1, \ a_0 = 2 \ (Let \ a = log_2 an, \ n \ge 0).$	10
15.a) Prove that (Q+, \star) where \star is binary operator defined by a \star b = a b/5 is a group.	5
b) List and explain the applications of group codes with suitable example.	5
16.a) Find the dual for the following planar graph.	5
(K) P	

b) Let G be a cycle on n vertices. Prove that G is self complementary iff n = 5. 5

17. Write the Kruskals algorithm. Apply this algorithm for finding the minimal cost spanning tree for the following graph.
