FACULTY OF ENGINEERING \& INFORMATICS

B.E. I Year (Common to all Branches) (Suppl.) Examination, December 2013 Subject: Mathematics - I

Time: 3 Hours
Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

PART - A (25 Marks)

1. Find the Taylor's series expansion of $f(x)=2^{x}$ about $x=0$.
2. Find the radius of curvature of the curve $r=a \sin \theta+b \cos \theta$ at $\theta=\pi / 2$.
3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x \sqrt{y}}{x^{2}+y}$ does not exist.
4. If $z=y+f(u), u=\frac{x}{y}$, show that $u \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$.
5. Evaluate $\int_{0}^{1} \int_{2 y}^{2} e^{x^{2}} d x d y$ by changing the order of integration.
6. Find a vector that gives the direction of maximum rate of increase for $f(x, y, z)=6 x y z$ at $(-1,2,1)$.
7. Find the values of λ and μ such that the system of equations $x+y+z=6$, $x+2 y+3 z=10, x+2 y+\lambda z=\mu$ has an infinite number of solutions.
8. Show that the vectors $(2,2,0),(3,0,2),(2,-2,2)$ are linearly independent.
9. Discuss the convergence of the series $\sum\left(1+\frac{1}{n^{p}}\right)^{n^{p+1}}, p>0$.
10. Test whether the series $\sum \frac{(-1)^{n}}{n \sqrt{n}}$ converges absolutely or not.

PART - B (50 Marks)

11.(a) State and prove Rolle's theorem.
(b) Find the envelope of the family of curves $x \tan \alpha+y \sec \alpha=5, \alpha$ is a parameter.
12.(a) Trace the curve $y=x^{3}-12 x-16$.
(b) Examine $f(x, y)=x^{4}+2 x^{2} y-x^{2}+3 y^{2}$ for maximum and minimum values.
13.(a) Show that $\bar{V}=12 x i-15 y^{2} j+k$ is irrotational and find a scalar function $f(x, y, z)$ such that $\bar{V}=\operatorname{grad} f$.
(b) Use the divergence theorem to evaluate $\iint_{\mathrm{S}} \overline{\mathrm{F}} . \overline{\mathrm{n}} \mathrm{ds}$, where $\overline{\mathrm{F}}=4 \mathrm{xi}-2 \mathrm{y}^{2} \mathrm{j}+\mathrm{z}^{2} \mathrm{k}$ and
S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$.
14.(a) If $-4,10, \sqrt{2}$ are the three eigen values of $A=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 2 & 1 \\ 4 & 3 & 1 & 2\end{array}\right)$, find the eigen values of A^{-1}.
(b) Find the canonical form, nature, index and signature of the quadratic form $Q=8 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-12 x_{1} x_{2}-8 x_{2} x_{3}+4 x_{3} x_{1}$.
15. Test the convergence of the series
a) $\frac{1}{1.3 .5}+\frac{2}{3.5 .7}+\frac{3}{5.7 .9}+\ldots$
b) $\sum \frac{(n!)^{2}}{(2 n)!} x^{2 n}$
16.(a) Find the evolute of the curve $y^{2}=4 a x$.
(b) For the function $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y(x-y)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$
show that $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$ at $(0,0)$.
17.(a) Show that $\nabla \times(\nabla \times \bar{V})=\nabla(\nabla \cdot \bar{V})-\nabla^{2} \bar{V}$.
(b) Find the rank of the matrix $A=\left(\begin{array}{ccccc}2 & 3 & 1 & 0 & 4 \\ 3 & 1 & 2 & -1 & 1 \\ 4 & -1 & 3 & -2 & -2 \\ 5 & 4 & 3 & -1 & 5\end{array}\right)$.

