FACULTY OF ENGINEERING

B.E. 4/4 (M/P/AE) I-Semester (Old) Examination, July 2014

Subject : Operations Research

Time : 3 hours

Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Define operations research.
2 Differentiate between unbalanced transportation problem and unbalanced assignment problem.
3 Define:
i) Reneging
ii) Balking and
iii) Jockeying

4 Differentiate between graphical method and simplex method inventory.
5 Define the condition for maximization in simplex method.
6 Define queue discipline.
7 Why replacement of equipment is necessary?
8 Define: i) Pure strategy ii) Mixed strategy and iii) Saddle point in game theory.
9 Determine common space for the following constraints

$$
2 x_{1}+3 x_{2} \leq 18 \text { and } 6 x_{1}+9 x_{2} \geq 54
$$

10 Discuss the role played by slack variables in simplex.

> PART - B (50 Marks)

11 Minimize $z=10 x+5 y+4 z$
STC $\quad 3 x+2 y-3 z \geq 3$

$$
4 x+2 z \geq 10
$$

$X, y, z \geq 0$
12 Solve the following transportation problem for initial solution by
i) least cost entry method
ii) Northwest corner method
iii) Vogel's approximation method

	To												
									D1	D2	D3	D4	Supply
From	F1	6	8	4	9	32							
	F2	12	6	18	20	18							
	F3	9	18	10	10	50							
	Demand	35	25	10	30	-							

13 An equipment with an initial cost of Rs. 15,000 has the following past data. When should the equipment be replaced.

Year	1	2	3	4	5	6	7	8
Resale value (Rs.)	12,000	9500	7500	5700	4200	3900	2900	2000
Annual maintenance cost (Rs.)	600	800	1050	1400	2100	3500	5000	6800

14. Solve the following assignment problem

Machines

		I	II	III	IV
	a	50	70	110	60
Men	b	80	50	90	60
	c	40	70	100	70
	d	100	40	80	30

15 Solve the following game
Player B's strategies

		b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
	a1	8	14	6	7	13
Player A's strategies	a2	12	14	8	16	4
	$a 3$	70	20	10	60	40
	a4	8	2	4	10	3

16 a) List out assumptions sequencing.
b) Solve the following scheduling problem for minimum processing time.

	J 1	J 2	J 3	J 4	J 5	J 6
M-I	18	12	15	12	19	18
M-II	16	10	14	11	17	20

17 Write short notes:
a) Dominance rules
b) Poisson arrival and exponential service
c) Primal LPP Vs. Dual LPP
d) Travelling salesman problem

FACULTY OF ENGINEERING
 B.E. 4/4 (M/P / AE) I - Semester (New) (SuppI.) Examination, July 2014

Subject: Operations Research

Time: 3 Hours
Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B. PART - A (10 x 2.5 = 25 Marks)

1 Briefly describe the scope of operations research.
2 State the applications of LP.
3 What is the test of optimality in case of simplex method?
4 Describe the mathematical formulation of an assignment model.
5 Define a queue. State the characteristics of waiting lines.
6 What is replacement problem? When does it arise?
7 Briefly explain the terms:
(i) Saddle point
(ii) Value of the game (iii) Pure and mixed strategies

8 State the assumptions made while dealing with sequencing problems.
9 What is multi-objective optimization?
10 What is sensitivity analysis? What does it signify?
PART - B (50 Marks)

11 A company produces two types of leather belts A and B. ' A ' is of superior quality and ' B ' is of inferior quality. The respective profits are Rs. 10/- and Rs. 5/- per belt. The supply of raw material is sufficient for making 900 belts per day. For belt ' A ' special type of buckle is required and only 450 are available per day. There are 750 buckles available for belt ' B ' per day. Belt ' A ' needs twice as much time as that required for belt ' B ' and the company can produce 500 belts if all of them were of type A. Find the optimal product mix and maximum profit.

12 Solve the following LPP by simplex method
Maximize $Z=4 x_{1}+6 x_{2}+x_{3}$
Subject to $2 x_{1}=x_{2}+3 x_{3} \leq 5$
$\mathrm{x}_{2} \leq 2$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
13 The table below gives the supply, demand and unit transportation cost for a transportation problem.

		Destination			
		X	X	Z	Supply
Source	A	4	6	3	50
	B	2	5	8	160
	C	7	3	2	250
	D	4	5	6	140
Demand	100	300	200		

Determine the initial solution using VAM and check whether the obtained solution is optimal (or) not.

14 a) Explain the graphical method of solving $2 x n$ and $m x 2$ games.
b) Solve the following game

	B			
		I	II	III
A	I	8	4	7
	II	-3	-4	3
	III	6	8	10

15 The maintenance cost and resale value per year of a machine whose purchase price is Rs. 6000 is given below.

Year	1	2	3	4	5	6	7	8	
Maintenance (Rs)	cost	900	1200	1600	2100	2800	3700	4700	5900
Resale value	4000	2000	1200	600	500	400	400	400	

When should the machine be replaced?
16 Six jobs are to be processed on 3 machines A, B and C in the order of BAC. The time taken by each job on the three machines is given below. Determine the optimum sequence for the jobs and makespan.

Job	1	2	3	4	5	6
A	30	40	20	10	50	35
B	50	80	90	70	60	75
C	40	80	70	60	20	45

17 a) People arrive at a hotel in a Poisson fashion with an arrival rate of 8 per hour. Service time is distributed exponentially with a mean time of 5 min . Calculate
i) The mean number of customers in the waiting line
ii) The mean waiting time in the queue
iii) The utilization factor
iv) The probability that the server is idle
v) The probability of ' 3 ' customers in the system.
b) Write short notes on genetic algorithm and its applications.

