Code No. 6361 / M

FACULTY OF INFORMATICS B.E. 3/4 (IT) II – Semester (Main) Examination, June 2014

Subject : Design and Analysis of Algorithms

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART – A (25 Marks)

1 2. 3 4 5 6 7 8 9 10	Exp Wh Me Wh Sta Wh Sta Wh	blain about Asymptotic notations. hat are elementary data structures? hat is knapsack problem? Explain. ntion any two applications of DFS. hat is spanning tree of a graph? het Bellman's principle of optimality of dynamic programming. hat is Lower-Bound theory? het graph coloring problem. hat is Decision problem? hat is NP-hard generation problem?	3 2 3 2 3 3 2 2 3
11	a) b)	PART – B (50 Marks) Write an algorithm for insertion of an element into heap. Give the algorithm for binary search and determine its time complexity by stercount method.	5 29 5
12	a) b)	What is divide and conquer? Give the control abstraction. Explain job sequencing with deadlines problem with an example. Give greed solution.	4 1y 6
13	Brie sets 9) - solu	efly argue how principle of a optimality holds for O/I knapsack problem, generate the s. S^{i} , $0 \le i \le 4$. Where $(w_1, w_2, w_3, w_4) = (10, 15, 6, 9)$ and $(P_1, P_2, P_3, P_4) = (2, 5, 4)$ – state the purging rules used. If knapsack capacity is m = 25, what is optimation.	ne 8, al 10
14	a) b)	Explain Branch and Bound. Give LCBB solution for the following knapsace instance $n = 4$ (P_1 , P_2 , P_3 , P_4) = (10, 10, 12, 18), (w_1 , w_2 , w_3 , w_4) = (2, 4, 6, 9) and $m = 15$. Explain about biconnected component.	ck nd 7 3
15	a) b)	Write an algorithm to find the shortest path from a single source in a graph. Explain traveling sales person problem.	6 4
16	a) b)	Discuss in detail about the problem of job sequencing with deadlines. Write algorithm for finding minimum spanning tree of a digraph and explain it wit an example.	5 th 5
17	Wri a)	ite short notes on : Node covering problem b) Cook's theorem	5 + 5
