FACULTY OF INFORMATICS
B.E. 3/4 (IT) II-Semester (Main) Examination, June 2014

Subject : Design and Analysis of Algorithms

Time : $\mathbf{3}$ hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Explain about Asymptotic notations. 3
2. What are elementary data structures? 2
3 What is knapsack problem? Explain. 2
4 Mention any two applications of DFS. 3
5 What is spanning tree of a graph? 2
6 State Bellman's principle of optimality of dynamic programming. 3
7 What is Lower-Bound theory? 3
8 State graph coloring problem. 2
9 What is Decision problem? 2
10 What is NP-hard generation problem? 3
PART - B (50 Marks)
11 a) Write an algorithm for insertion of an element into heap. 5
b) Give the algorithm for binary search and determine its time complexity by step count method. 5
12 a) What is divide and conquer? Give the control abstraction. 4
b) Explain job sequencing with deadlines problem with an example. Give greedy solution. 6
13 Briefly argue how principle of a optimality holds for O/I knapsack problem, generate the sets. $\mathrm{S}^{i}, 0 \leq i \leq 4$. Where $\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=(10,15,6,9)$ and $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}\right)=(2,5,8$, 9) - state the purging rules used. If knapsack capacity is $m=25$, what is optimal solution. 10
14 a) Explain Branch and Bound. Give LCBB solution for the following knapsack instance $n=4\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=(10,10,12,18),\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(2,4,6,9)$ and $\mathrm{m}=15$. 7
b) Explain about biconnected component. 3
15 a) Write an algorithm to find the shortest path from a single source in a graph. 6
b) Explain traveling sales person problem. 4
16 a) Discuss in detail about the problem of job sequencing with deadlines. 5
b) Write algorithm for finding minimum spanning tree of a digraph and explain it with an example. 5

17 Write short notes on:
a) Node covering problem
b) Cook's theorem

