Code No. 6330 / M

FACULTY OF ENGINEERING

B.E. ³/₄ (EEE) II – Semester (Main) Examination, June 2014

Subject: Electrical Machinery – III

Time: 3 Hours

Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B. PART – A (25 Marks)

1	Define phase spread and slot ripple.	(3)
2	Write the effects of change in synchronous impedance of a synchronous machine.	(3)
3	Write the advantages of parallel connections of synchronous generators.	(2)
4	Explain why a synchronous motor does not have starting torque.	(2)
5	What are the effects of change of excitation of a synchronous motor on its power factor	?(3)
6	Why the value of reguation of an alternator is negative under capacitive loading.	(3)
7	Explain distribution factor and pitch factors of synchronous machine.	(3)
8	What is slew range?	(2)
9	Discuss the speed-torque characteristics of two phase servo motors.	(2)
10	Write the applications of linear induction motors.	(2)

PART – B (50 Marks)

11	Der	rive the emf equation for an alternator and the expressions for distribution factor and	
	pito	ch factor.	(10)
12	Dis	cuss in detail the methods of synchronization of alternators.	(10)
13		A 1000 KVA, 11,000 V, 3- ø star connected synchronous motor has a synchronous	• •
	• •	impedance of 3.5Ω + j40 Ω per phase. Find the induced emf and angular	
		retardation of the motor at full load unity power factor.	(5)
	(b)	Explain the effects of change of excitation of a synchronous motor driving a	. ,
		constant load.	(5)
14	(a)	Discuss in detail different methods of determining regulation of synchronous	,
		generator.	(5)
	(b)	A 3- ϕ , 200 KVA, 400 V, 50 Hz alternator has per phase armature resistance and	. ,
		synchronous reactance of 0.1Ω and 1.2Ω respectively. Determine the induced	
		emf when the machine is delivering rated current at a load power factor of unity.	
		Draw the phasor diagram also.	(5)
15	Des	scribe the working principle and applications of	()
			+ 5)
16		ite short notes on:	,
	a)	Two-reaction theory b) Hunting in synchronous machines (5	+ 5)
17		The stator of a 3- ϕ , synchronous machine is wound for four poles and has a	
		double layer winding wound in 48 slots. Calculate the distribution factor.	(5)
	(b)	A turbo generator has no-load terminal voltage equal to 1.0 pu and $x_d = 1.0$ p.u,	()
	、 /	x_{d}^{1} = 0.20 p.u. When inductive load of x_{L} = 2.0 pu is suddenly applied then find the	
		load terminal voltage due to sudden change in x_L .	(5)
		10 au torrinnar voltage due to sudder originge in $\lambda_{\rm L}$.	(0)