## FACULTY OF ENGINEERING

B.E. 3/4 (EE/Inst.) I - Semester (Supplementary) Examination, July 2014

## Subject : Digital Electronics and Logic Design

Time : 3 hours
Max. Marks : 75

## Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

3 What are the applications of multiplexer?
4 Define the terms: i) propagation delay ii) fan-in and iii) Noise margin 3
5 How does the look ahead carry adder speeds up the addition process? 2
6 Give the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction
$\begin{array}{ll}\text { i) } X-Y \text { and } & \text { ii) } Y-X \text { by using 2's complement method. }\end{array}$
7 Explain about debouncing switch. 3
8 Define ring counter. $\quad 2$
9 What is state diagram? Give an example. 3
10 List out the applications of registers. 2
PART - B (50 Marks)
11 Reduce the following function to SOP and POS forms using K-map. 10
$f(A, B, C, D)=\sum(1,3,4,7,11)+d(5,12,13,14,15)$
12 Minimize the following function using the tabular method
$f(A, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(2,4,6,8,9,10,12,13,15)$
13 a) Draw the logic diagram and implement the 4-bit magnitude comparator. 6
b) Realize a full adder using NAND gates. 4

14 a) Explain the operation of positive edge triggered SR flip-flop. 5
b) Describe about general BCD counter. 5

15 Implement the following function using PLC 10

$$
\begin{aligned}
& f_{1}(A, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,6,9,11) \\
& f_{2}(A, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,6,8,9) \\
& f_{3}(A, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(2,3,8,9,11)
\end{aligned}
$$

16 a) Explain about TTL subfamilies. 5
b) Discuss the steps involved in synthesis procedure using flip-flops. 5

17 a) Expand $A(\bar{B}+A)$ to maxterms and minterms. 5
b) Explain about basic latch circuit operation.

