B.E. 2/4 (IT) II - Semester (Main) Examination, June 2014

Subject : Signals and Systems

Time : 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Given $x(t)=6 \cos 4 t+3 \sin 2 t+4 \operatorname{cost} \sin t$. Find the even and odd components of the signal. 2
2 How orthogonal property is central to determine the Fourier series coefficients?
3 Find the inverse FT of $X(j w)=2 \pi \delta(w)$.
4 Write initial value and final value theorems of LT.
5 State sampling theorem.
6 How z-transform is used to determine the causality of LTI system?
7 Evaluate the convolution of $x[n]$ with $\delta[n]$.
8 Given $x(n)=[4,-2,2,0,4]$ and $y[x]=[3,0,-3,6]$ determine their cross-correlation sequence.
9 How are the impulse response and step response of an LTI system related?
10 An LTI system has system function $H(z)=\frac{z}{z-a}$. What is the range of values of a for which system is stable.

PART - B (50 Marks)

11 a) Determine the complex - exponential Fourier series expansion of the periodic signal shown in figure 11(a).

figure 11(a)
b) State and prove Parseval's theorem.

12 a) Find the Fourier transform of

$$
x(t)=\cos \pi \mathrm{t} \quad ; \quad-\frac{1}{2} \leq t \leq \frac{1}{2}
$$

$$
0 \text { otherwise }
$$

b) Determine the energy contained in the signal $x(t)=20$ sinc 10 t .

13 a) Find the bilateral Laplace transform of $x(t)=3 e^{-7 t} u(t)-12 e^{4 t} u(-t)$.
b) Solve the following differential equation using the unilateral Laplace transform.

$$
\frac{d^{2} x(t)}{d t^{2}}+3 \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}+2 x(t)=2 \mathrm{u}(\mathrm{t}) \text { and } x\left(0^{-}\right)=1, \quad \mathrm{x}^{1}\left(0^{-}\right)=0
$$

14 a) What is aliasing? What causes it and how it can be eliminated?
b) Find and sketch the wave form $z(t)=x(t) * y(t)$, if $x(t)$ and $y(t)$ an shown in figure 14(b).

15 a) Find the auto-correlation function and the energy spectral density of the signal $x(t)$ $=e^{-t} u(t)$.
b) Find the unilateral z-transform of $x(n)=\left[a^{n} \cos \mathrm{w}_{0} n\right] u(n)$

16 a) An LTI system has an impulse response of $e^{-t} \cos (100 \pi t) u(t)$. Determine the output of the system for an input of $x(t)=\cos (100 \pi t) u(t)$.
b) Determine whether the following system is static, linear time invariance and causal.

$$
2 \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+t \quad \mathrm{y}(\mathrm{t})=4 \mathrm{x}(\mathrm{t})
$$

17 a) Write a MATLAB program to compute and plot 20 samples of the unit sample response sequence $h(n)$ of the causal LTI system described by the first order difference equation.
$y(n)=x(n)-0.9 y(n-1)$
b) Write a MATLAB program to determine the circular convolution of the sequences $x(n)=[2,-1,3,5,1]$ and $y(n)=[1,-2,3,1,4]$.

