Code No. 6074 / M

FACULTY OF INFORMATICS B.E. 2/4 (I.T.) II - Semester (Main) Examination, June 2014

Subject : Probability and Random Process

Time : 3 Hours

Note: Answer all questions of Part - A and answer any five questions from Part-B. PART – A (25 Marks)

1	Define properties of Joint cumulative distribution function.	(2)
2	If A and B are independent events, prove that $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ are also independent.	(2)
3	State any three properties of characteristic function.	(3)
4	Define Axiomatic definition of probability.	(2)
5	What is the difference between random variable and random process?	(3)
6	Find mean and variance of Poisson distribution.	(3)
7	Write any three properties of auto correlation.	(3)
8	Define Guassian process.	(3)
9	State any three properties of power spectral density function.	(2)
10	State Wiener – Khinchin theorem.	(2)

11 (a) Suppose box 1 contains **a** white ball and **b** black balls and box 2 contain **c** white balls and d black balls. One ball of unknown color is transferred from the first box into the second one and then a ball is drawn from the latter. What is the probability that it will be a white ball?

(b) Show that
$$P(A_1 \cup A_2 A_3 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n) - P(A_1 \cap A_2 \cap A_3 \dots \cap A_n)$$
 (5)

- 12 Three switches S_1 , S_2 and S_3 connected in parallel operate independently and each switch remains closed with probability p. (10)
 - (a) Find the probability of receiving an input signal at the output.
 - (b) Find the probability that the switch S₁ is open given that an input signal is received at the output.
- 13 Give $f_{xy}(x,y) = C x (x y), 0 < x < 2$, and 0 elsewhere,
 - (a) evaluate C, (b) find $f_{x,x}(x)$ (c) find $f_{y/x}(y/x)$
- 14 (a) If $Y = X^2$ where X is a Gaussian random variable with zero mean and variance σ^2 , find the pdf of the random variable Y.
 - (b) If the continuous random variable X has pdf $f_x(x) = 2/9 (x + 1)$, -1 < x < 2 and 0, elsewhere. Find the pdf of Y = X².

.....2

(5)

(5)

- 15 (a) Show that the random process $X(t) = a \cos(w_0 t + \theta)$ is wide-sense stationary, if A and w_0 are constants and uniformly distributed random variable in $(0, 2\pi)$. (5)
 - (b) Find the power spectral density of a WSS process with autocorrelation function R(t) = $a^2 e^{-2\beta|t|}$ (5)
- 16 (a) If the power spectral density of a WSS process is given by S(w) = b / a (a | w |), |
 w | ≤ a, 0, | w | > a
 Find the autocorrelation function of the process. (5)
 - (b) Write a short notes on :(i) Thermal Noise (ii) Filters
- 17 Consider a white Gaussian noise of zero mean and power spectral density $N_0/2$ applied
 - to a low-pass RC filter whose transfer function is $H(f) = \frac{1}{1 + i2 \pi fRC}$. Find the autocorrelation function of the output random process. (10)
