Code No. : 6030/S

FACULTY OF INFORMATICS B.E. 2/4 (IT) I Semester (Suppl.) Examination, July 2014 DISCRETE MATHEMATICS

Tim	e : 3 Hours] [Max. Marks : 7	70
	Note : Answer all questions from Part A . Answer any five questions from Part B .	
	PART – A (10×2= 20 Mark	s)
1.	Write the converse, the opposite to the following :	
	"If triangle ABC is a right angle, then $ AB ^2 + BC ^2 = AC ^2$.	3
2.	Define contra positive with an example.	2
3.	Define absurdity with an example.	2
4.	Construct truth table for $[(p \lor q) \land (\sim r)] \leftrightarrow q$.	3
5.	Define existential quantifier with an example.	2
6.	Give an example of a predicate $p(x, y)$ such that $\exists x \forall y p(x, y)$ and $\forall y \exists x p(x, y)$ have different truth values.	3
7.	Disprove the statement that every positive integer is the sum of the cubes of eight non-negative integers.	3
8.	Show that if $f(x)$ is $O(x)$ then $f(x)$ is $O(x^2)$.	3
9.	Define totally ordered set.	2
10.	Define chromatic number of a graph with an example.	2
	PART – B (5×10=50 Mark	s)
11.	a) Construct truth table for $(p \lor \sim Q) \rightarrow (p \land Q)$.	5
	b) Show that the following statements are logically equivalent without using truth table	
	$p(V(Q\wedgeR)) \Leftrightarrow (p\veeQ)\wedge(p\veeR).$	5
12.	a) Show that the following statements are logically equivalent	
	$(P \to Q) \Leftrightarrow (p \land Q) \lor (\sim p \land \sim Q) .$	5
	b) Show that ~ (P \leftrightarrow Q) \leftrightarrow (p \wedge ~ Q) \vee (~ p \vee Q).	5

(This paper contains 2 pages)

P.T.O.

e

Code No.: 6030/S

13. a) How many positive integers 'n' can be found using 3, 4, 4, 5, 5, 6, 7, if 'n' has to exceed 5 00 0000 ?	5
b) For which real numbers x and y is it true that $[x + y] = [x + 5]$?	5
14. a) Prove that 3 divides $n^3 + 2n$ whenever 'n' is a positive integer.	4
b) If $x > 2$, $y > 0$, $z > 0$ then find the number of solutions of $x + y + z + w = 21$.	6
15. a) Solve $y_{n+2} - y_{n+1} - 6y_n = 0$ with $y_1 = 1$, $y_0 = 2$. b) Find the co-efficient of x^9 in	5
$(x^3 + x^5 + x^6) (x^3 + x^4) (x + x^2 + x^3 + x^4 +)$	5
 16. a) Show that the relation R on a set 'A' is reflexive if and only if the inverse relation R⁻¹ is reflexive. b) Is the relation given in directed graph shown is a partial order. 	5 5
 17. a) State Euler's formula for a connected planar graph. b) Determine all six passible spapping trees from the graph 	2 8
b) Determine all six possible spanning trees from the graph.	Ο

C

J