FACULTY OF INFORMATICS

B.E. 2/4 (IT) I Semester (Suppl.) Examination, July 2014 DISCRETE MATHEMATICS

Time : 3 Hours]

[Max. Marks : 70

Note : Answer all questions from Part A. Answerany five questions from Part B.

PART-A
(10×2= 20 Marks)

1. Write the converse, the opposite to the following :
"If triangle $A B C$ is a right angle, then $|A B|^{2}+|B C|^{2}=|A C|^{2}$. 3
2. Define contra positive with an example. 2
3. Define absurdity with an example. 2
4. Construct truth table for $[(p \vee q) \wedge(\sim r)] \leftrightarrow q$. 3
5. Define existential quantifier with an example. 2
6. Give an example of a predicate $p(x, y)$ such that $\exists x \forall y p(x, y)$ and $\forall y \exists x p(x, y)$
have different truth values.
7. Disprove the statement that every positive integer is the sum of the cubes of
eight non-negative integers.
8. Show that if $f(x)$ is $O(x)$ then $f(x)$ is $O\left(x^{2}\right)$. 3
9. Define totally ordered set. 2
10. Define chromatic number of a graph with an example. 2

PART - B ($5 \times 10=50$ Marks)
11. a) Construct truth table for $(p \vee \sim Q) \rightarrow(p \wedge Q)$.
b) Show that the following statements are logically equivalent without using truth table
$p(V(Q \wedge R)) \Leftrightarrow(p \vee Q) \wedge(p \vee R)$.
5
12. a) Show that the following statements are logically equivalent

$$
\begin{equation*}
(P \rightarrow Q) \Leftrightarrow(p \wedge Q) \vee(\sim p \wedge \sim Q) . \tag{5}
\end{equation*}
$$

b) Show that $\sim(P \leftrightarrow Q) \leftrightarrow(p \wedge \sim Q) \vee(\sim p \vee Q)$. 5
13. a) How many positive integers ' n ' can be found using $3,4,4,5,5,6,7$, if ' n ' has to exceed 5000000 ?
b) For which real numbers x and y is it true that $[x+y]=[x+5]$? 5
14. a) Prove that 3 divides $n^{3}+2 n$ whenever ' n ' is a positive integer.
b) If $x>2, y>0, z>0$ then find the number of solutions of $x+y+z+w=21$.
15. a) Solve $y_{n+2}-y_{n+1}-6 y_{n}=0$ with $y_{1}=1, y_{0}=2$.
b) Find the co-efficient of x^{9} in

$$
\left(x^{3}+x^{5}+x^{6}\right)\left(x^{3}+x^{4}\right)\left(x+x^{2}+x^{3}+x^{4}+\ldots\right)
$$

16. a) Show that the relation R on a set ' A ' is reflexive if and only if the inverse relation R^{-1} is reflexive.
b) Is the relation given in directed graph shown is a partial order.

17. a) State Euler's formula for a connected planar graph.
b) Determine all six possible spanning trees from the graph.

