Code No. 6049 / M

Max. Marks: 75

FACULTY OF ENGINEERING B.E. 2/4 (EE/Inst.) II - Semester (Main) Examination, June 2014

Subject : Solid Mechanics

No	ote: Answer all questions of Part - A and answer any five questions from Part-B. PART – A (25 Marks)	
1	Define Poisson's ratio and Bulk modulus.	(2)
2	Define point of contraflexure. In what types of beams does it occur.	(2)
3	What is the ratio of max. shear stress to average shear stress in a solid triangle of size bxh.	(2)
4	Define the term Equivalent B.M. and Equivalent Torque.	(2)
5	Explain the terms strain energy and proof resilience.	(2)
6	Draw the stress-strain curve for Ductile materials and mark the salient points.	(3)
7	A cantilever beam of span 3m is subjected to a point load of 2kN at end. Find SF & BM.	(3)
8	Define section modulus, flexural rigidity and moment of resistance.	(3)
9	A square beam of 100mm side is used to carry UDL of 1 kN/m over a span of 5m. Find the maximum stress developed in the beam.	(3)
10	State the maximum slope and deflection for a simply supported beam carrying UDL throughout the span.	(3)

PART – B (50 Marks)

11 A steel bolt 12mm diameter passes through a brass tube of 16mm internal diameter, 250mm long and 20mm external dia. The bolt is tightened by a nut at 15°C, so as to exert a compressive force of 20kN on the tube. Calculate the stresses in each when the temperature of the bolt and tube is raised by 100°C.

Take <mark>E₅=200</mark> GPa	α _s =12x10 ⁻⁶ /⁰C
E _b =100 GPa	α _b = 19x10 ⁻⁶ /⁰C

Time: 3 Hours

12 Draw SFD and BMD for the beam shown in figure.

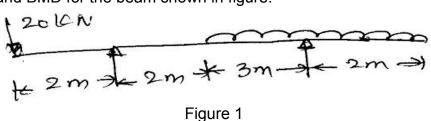
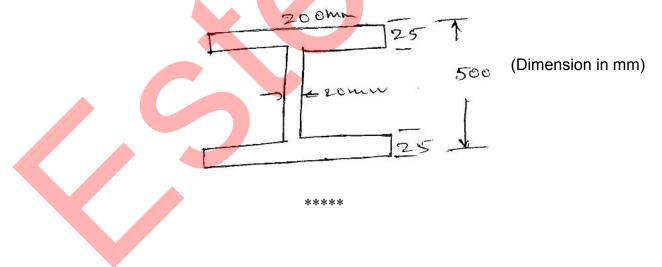



Figure 1

- 2 -

- 13 A steel beam of hallow square section of 60mm outside and 50mm inner side dimensions is simply supported on a span of 4m. Find the maximum uniformly distributed load the beam can carry throughout the span, if the bending stress is not to exceed 120MPa.
- 14 A simply supported beam of span 6m carries 2 point loads of 10kN and 20kN at 2m and 4m from left end respectively. Find the slope at supports and deflection under point loads (EI = constant).
- 15 A wagon weighing 25kN is moving at a speed of 5kmph. How many springs each of 24 coils will be required in a buffer to absorb the energy?
- 16 A solid circular shaft is used to transmit a power of 500 HP at 300 rpm. The max. shear stress should not exceed 80 MPa and angle of twist is 2m length of the shaft should not exceed 4°. Determine its diameter.
- 17 The symmetric I section shown in figure 2 is used as a beam. In this is subjected to a shear force 'F', find what % of shear is resisted by web.

