FACULTY OF ENGINEERING

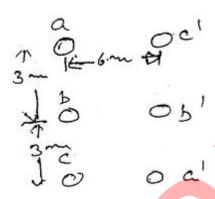
B.E. 2/4 (EEE) II - Semester (Main) Examination, June 2014

Subject: Power Systems - I

Time: 3 Hours Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

	PART – A	
1 2	Define the terms thermal efficiency and over all efficiency of steam power station. A Hydro electric generating station is supplied from a reservoir of capacity 5x10 ⁶ cubic meters at a head of 200 meters. Find total energy available in kwh, if the overall	(2)
	efficiency is 75% (Mass of 1 m ³ of water is 1000 kg).	(3)
3 4	Explain the main components of overhead lines. Write the properties of line supports.	(2) (2)
5	Classify the types of insulators and define safety factor of an insulator, string efficiency of	
6	an insulator. Explain the terms skin effect and proximity effect.	(3) (2)
7	Explain about self-GMD and mutual-GMD.	(3)
8 9	Explain the term Sag, working te <mark>ns</mark> ion, stringing charts. Mention types of dc distributors.	(3)
10	Define the terms load factor, diversity factor, plant capacity factor.	(2) (3)
	PART – B	
	FAILI - B	
11	(a) A power sta <mark>tio</mark> n has the following daily load cycle:	
	Time in hours 6 - 8 8 - 12 12 - 16 16 - 20 20 - 24 24 - 6	
	Load in MW 20 40 60 20 50 20	
	Plot load curve, load duration curve. Find energy generated per day.	(6)
	(b) A power-station has a maximum demand of 15,000 kw. Annual load factor 50%. Plant capacity factor 40%. Find reserve capacity.	(4)
12	(a) A overhead line is supported on two poles 200 m apart having a difference in level of 10 m. The conductor dia is 2 cm and weighs 2.3 kg/m. Find sag at lower support. Wind pressure is 57.5 kg/m ² of projected area. Factor of safety. T = 4, 220 kg/cm ² .	(5)
	(b) A string of 5 suspension insulators is to be fitted with a grading ring. Pin to earth capacitances are equal to C. Find the values of line to pin capacitances that would give a uniform voltage distribution along the string. Take capacitance of each string as C.	<i>(</i> 5)
	as o.	(5)


13 (a) Consider a double ckt 3-phase overhead line phase sequence is ABC and ten line is completely transposed. Conductor radius is 1.3 cm. Find inductance / phase / km.

respectively).

(b) Derive the formulae for capacitance to neutral of 3 - phase, symmetrical spacing overhead line (Assume A, B, C are 3-conductors, QA, QB, QC are charge in length

(5)

(5)

- 14 (a) Two tram cars (A & B) 2 km and 6 km away from a substation return 40A and 20A respectively to rails sub-station voltage 600v dc. Resistance of trolley wire is $0.25\Omega/km$ and that of track is $0.03\Omega/km$. Calculate voltage across each tram car draw single line diagram of the arrangement. (5)
 - (b) A 1- ϕ ac distributor in bed form end A with details as shown

Load pf refers to voltage at far end. Find total voltage drop in the distributor. (5)

- 15 (a) Draw the schematic diagram of a thermal plant and explain main components briefly. (5)
 (b) Draw the schematic arrangement of nuclear power station and explain main
 - components briefly. (5)
- 16 (a) Describe flat plate, focusing type of collectors. (3)
 - (b) Describe photo voltaic solar energy conversion and explain limitation.
 (c) Describe briefly types of windmills.
- 17 Write short notes on the following:
 - a) Grading of capacitors (4)
 - b) OTEC conversion (3)
 - c) Types of Tariff (3)
