Code No. 6050 / M

## FACULTY OF ENGINEERING

B.E. 2/4 (EE / Inst.) II – Semester (Main) Examination, June 2014

### Subject: Electromagnetic Theory

#### Time: 3 Hours

Max.Marks: 75

#### Note: Answer all questions from Part A. Answer any five questions from Part B. PART – A

| 1  | Name the various coordinate systems.                                   | (2) |
|----|------------------------------------------------------------------------|-----|
| 2  | Define Dot Product with an example.                                    | (3) |
| 3  | What is magnetization?                                                 | (2) |
| 4  | What is meant by boundary conditions for electric and magnetic fields? | (3) |
| 5  | Explain Finite element method.                                         | (2) |
| 6  | Define Faraday's laws of Induction and Lenz's law.                     | (3) |
| 7  | What is uniform plane wave give an example?                            | (3) |
| 8  | What is wave number?                                                   | (2) |
| 9  | Mention the application of optical fiber.                              | (3) |
| 10 | Mention the sources of EMI.                                            | (2) |
|    |                                                                        |     |

# PART – B

- 11 (a) Explain gradient of a scalar field and divergence of a vector field. (5)(b) Vectors A =  $6u_x + 5u_y + 4u_z$  and B =  $3u_x + 4u_y + 4u_z$  are situated at a point (x,y,z). Find A+B and A·B. (5)
- 12 (a) What is an electric dipole, derive electric field due to dipole.

(b) If the magnetic vector potential A =  $-f^2/4a_z$  wb/m calculate the total magnetic flux,

crossing the surface  $\phi = \frac{\pi}{2}$ , 1≤p≤2m, 0≤z≤5m.

- 13 (a) Derive Poisson's equation for homogeneous region.
  - (5) (b) Obtain electric field between two infinite parallel metal plates located in a vacuum as shown below, by (analytical one dimension solution) direct integration method. (5)



14 (a) Derive equation of continuity. (5)(b) Prove that uniform plane wave is a traverse electromagnetic wave. (5)

.....2

(5)

(5)

| 15 | <ul> <li>(a) Give Maxwell's equations in point form and integral form.</li> <li>(b) Obtain plans wave propagation in terms of propagation constant in a Loss Dielectric Medium.</li> </ul> | (5)                                                                          |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|
|    |                                                                                                                                                                                            | Dielectric Medium.                                                           | (5) |
| 16 | (a) Explain controlling techniques of EMI.                                                                                                                                                 | (5)                                                                          |     |
|    | (D)                                                                                                                                                                                        | space.                                                                       | (5) |
| 17 | Wri<br>a)                                                                                                                                                                                  | te short notes on the following:<br>Explain spherical coordinate system.     | (5) |
|    | D)                                                                                                                                                                                         | Explain method of moments considering four charges distributed in the space. | (5) |