FACULTY OF ENGINEERING

B.E. 2/4 (EEE) II - Semester Examination, June 2014

Subject : Electrical Circuits - II

Time: 3 Hours
Max. Marks: 75

Note: Answer all questions of Part - A and answer any five questions from Part-B. PART - A (25 Marks)

1 Explain the initial conditions in R, L and C in respect of Transient analysis.
2 A $5 \mu \mathrm{~F}$ condenser is connected through a $1000 \mathrm{~K} \Omega$ resistor to a DC source 10 V . After being charged for half minute, the condenser is disconnected and discharged through a resistor R. Determine the energy dissipated in R.
3 State Initial and final value theorems in Laplace transform.
4 Obtain the current response of RC parallel circuit for unit step input using Laplace transformation.
5 Define Transfer function and its Limitations.
6 Find the current response $\mathrm{i}(\mathrm{t})$ if $\mathrm{I}(\mathrm{s})=\frac{2 s^{2}+3 s+2}{s 2+2 s-3}$.
7 Check whether the following polynomial is Hurwitz or not?

$$
\begin{equation*}
P(s)=2 s^{6}+s^{5}+13 s^{4}+6 s^{3}+56 s^{2}+25 s+25 \tag{3}
\end{equation*}
$$

8 Define half-wave symmetry in Fourier series.

PART - B (50 Marks)

9 The switch is open for a long time and is closed at $t=0$. Find the values of R_{1} and R_{2} in the circuit given in figure 1. if $V_{R}\left(0^{+}\right)=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}(1, \mathrm{msec})=5 \mathrm{~V}$.

10 Find $\mathrm{Vc}(\mathrm{t})$ and $\mathrm{I}_{\mathrm{L}}(\mathrm{t})$ in the circuit of figure 2 assuming zero initial conditions. (Use Laplace transformation).

- 2 -

11 Obtain the pole zero plot in the s-plane of the driving point independence function for the network shown in figure 3.

12 Find $i(t)$ using Laplace transform for the circuit shown in figure 4 if the initial voltage on the capacitor is 4 v . Assume zero initial condition for the inductor.

13 (a) Write all the properties of positive Real functions.
(b) Check whether the given $\mathrm{p}(\mathrm{s})$ is positive Real or not?

$$
\begin{equation*}
p(s)=s^{5}+7 s^{4}+5 s^{3}+s^{2}+2 s+4 \tag{6}
\end{equation*}
$$

14 (a) Find the Fourier transforms for the following functions

$$
\begin{equation*}
\text { (i) } \sin (4 t+30) \text { (ii) } u(t+2) \tag{5}
\end{equation*}
$$

(b) State and explain complex Translational theorem.

15 Realize $\mathrm{Z}(\mathrm{s})=\frac{s\left(s^{2}+2\right)\left(s^{2}+4\right)}{\left(s^{2}+1\right)\left(s^{2}+3\right)\left(s^{2}+5\right)}$ in both Foster and forms.

