Code No. 6048 / M

FACULTY OF ENGINEERING B.E. 2/4 (EEE) II - Semester Examination, June 2014

Subject : Electrical Circuits - II

Time : 3 Hours

Note: Answer all questions of Part - A and answer any five questions from Part-B. PART – A (25 Marks)

1	Explain the initial conditions in R, L and C in respect of Transient analysis.	(3)
2	A 5 μ F condenser is connected through a 1000 K Ω resistor to a DC source 10V. After being charged for half minute, the condenser is disconnected and discharged through a resistor R. Determine the energy dissipated in R.	(3)
3	State Initial and final value theorems in Laplace transform.	(3)
4	Obtain the current response of RC parallel circuit for unit step input using Laplace transformation.	(3)
5	Define Transfer function and its Limitations.	(3)
6	Find the current response i(t) if I(s) = $\frac{2s^2 + 3s + 2}{s^2 + 2s - 3}$.	(4)
7	Check whether the following polynomial is Hurwitz or not?	(3)
	P(s)=2s ⁶ +s ⁵ +13s ⁴ +6s ³ +56s ² +25s+25	
8	Define half-wave symmetry in Fourier series.	(3)
	PART – B (50 Marks)	

9 The switch is open for a long time and is closed at t = 0. Find the values of R₁ and R₂ in the circuit given in figure 1. if $V_R(0^+) = 10V$ and $V_R(1,msec) = 5V$. (10)

10 Find Vc(t) and $I_{L}(t)$ in the circuit of figure 2 assuming zero initial conditions. (Use Laplace transformation). (10)

.....2

- 2 -

11 Obtain the pole zero plot in the s-plane of the driving point independence function for the network shown in figure 3. (10)

12 Find i(t) using Laplace transform for the circuit shown in figure 4 if the initial voltage on the capacitor is 4v. Assume zero initial condition for the inductor. (10)

- 13 (a) Write all the properties of positive Real functions. (4) (b) Check whether the given p(s) is positive Real or not? $p(s) = s^5 + 7s^4 + 5s^3 + s^2 + 2s + 4.$ (6)
- 14 (a) Find the Fourier transforms for the following functions(i) sin(4t+30)(ii) u(t+2)(5)(b) State and explain complex Translational theorem.(5)

15 Realize Z(s) =
$$\frac{s(s^2+2)(s^2+4)}{(s^2+1)(s^2+3)(s^2+5)}$$
 in both Foster and forms. (10)
