Code No. 6061 / M

FACULTY OF ENGINEERING B.E. 2/4 (ECE) II – Semester (Main) Examination, June 2014

Subject: Pulse, Digital and Switching Circuits

Time: 3 Hours

Max.Marks: 75

(6)

(4)

(5)

(10)

(10)

Note: Answer all questions from Part A. Answer any five questions from Part B. PART – A

1	Explain the need for attenuator.	(2)
2	Explain the responses of RC integrator for step input at different time constants.	(3)
3	Compare the performance of series clipper with shunt clipper.	(2)
4	What is hysterisis in a Schmitt Trigger Circuit?	(2)
5	Give the different names and applications of mono stable and astable multivibrators.	(3)
6	Define prime implicants and essential prime implicants.	(2)
7	Implement full adder circuit by using half adders with other gates.	(3)
8	Explain static hazard free situation with example.	(3)
9	Distinguish between melay and moore machine.	(3)
10	Define a decoder and mention its applications.	(2)

PART – B

11 The input wave form shown in Fig. is applied to a low pass RC circuit at t=0. Sketch the O/P voltage from t=0 to t=1 msec. The low pass RC circuit uses R=100 Ω and C=0.1 μ F. The input signal source resistance is 1k Ω . Assume initial capacitor voltage zero. (10)

- 12 Explain the effect of R_f and R_s on clamper circuit and derive its expression for output voltage levels for the square wave input. (10)
- 13 (a) Explain the working of a Regenerative Comparator.
 - (b) Draw and explain the sweep circuit using UJT.
- 14 Simplify the following expression of $F(A, B, C, D, E) = \epsilon m (0, 1, 2, 3, 4, 5, 12, 13, 14, 26, 27, 28, 29, 30)$ using Quine McClusky method. (10)
- 15 (a) Design a modulo-3 counter using D Flip-flop that count as $01 \rightarrow 10 \rightarrow 11$. The unused state '00' goes to '01' at next clock trigger. (5)
 - (b) Design an asynchronous mod 5 counter using JK Flip-flops.
- 16 Design a sequence generator with minimum no. of flip-flops that generates sequence "10110001" repetitively.
- 17 Write short notes on:a) Flip-flop conversion
- b) Time base generators c) Compensated attenuator.
