FACULTY OF ENGINEERING

B.E. 2/4 (ECE) II - Semester (Main) Examination, June 2014

Subject: Pulse, Digital and Switching Circuits

Time: 3 Hours

Max.Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B. PART - A

1 Explain the need for attenuator.
2 Explain the responses of RC integrator for step input at different time constants.
3 Compare the performance of series clipper with shunt clipper.
4 What is hysterisis in a Schmitt Trigger Circuit?
5 Give the different names and applications of mono stable and astable multivibrators.
6 Define prime implicants and essential prime implicants.
7 Implement full adder circuit by using half adders with other gates.
8 Explain static hazard free situation with example.
9 Distinguish between melay and moore machine.
10 Define a decoder and mention its applications.

PART - B

11 The input wave form shown in Fig. is applied to a low pass RC circuit at $t=0$. Sketch the O / P voltage from $\mathrm{t}=0$ to $\mathrm{t}=1 \mathrm{msec}$. The low pass RC circuit uses $\mathrm{R}=100 \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. The input signal source resistance is $1 \mathrm{k} \Omega$. Assume initial capacitor voltage zero.

12 Explain the effect of R_{f} and R_{s} on clamper circuit and derive its expression for output voltage levels for the square wave input.
13 (a) Explain the working of a Regenerative Comparator.
(b) Draw and explain the sweep circuit using UJT.

14 Simplify the following expression of $F(A, B, C, D, E)=\epsilon m(0,1,2,3,4,5,12,13,14,26$, $27,28,29,30$) using Quine McClusky method.
15 (a) Design a modulo-3 counter using D Flip-flop that count as $01 \rightarrow 10 \rightarrow 11$. The unused state ' 00 ' goes to ' 01 ' at next clock trigger.
(b) Design an asynchronous mod 5 counter using JK Flip-flops.

16 Design a sequence generator with minimum no. of flip-flops that generates sequence "10110001" repetitively.
17 Write short notes on:
a) Flip-flop conversion
b) Time base generators
c) Compensated attenuator.

