Code No. 6057 / M

FACULTY OF ENGINEERING

B.E. 2/4 (ECE/M/P/ AE/CSE) II – Semester (Main) Examination, June 2014

Subject : Mathematics – IV

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART – A (25 Marks)

1 Evaluate
$$\int_{c} \frac{2z+1}{(z+1)(z-1)(z+2)} dz$$
, where c is $|z| = \frac{3}{2}$ by using residue theorem. (3)
2 Evaluate $\int_{0}^{1/2} (x^2 + iy) dz$ along y = x. (2)
3 Find the zeros of f(z)=e^z - 1. (3)
4 Determine the points at which the mapping w = sin rtz is not conformal. (3)
5 A, B are two mutually exclusive events of a random experiment. If $P(AUB) = 0.75$ and $P(\overline{A}) = 0.6$ then find P(B). (3)
6 Find the expectation of Gamma variate with one parameter. (2)
7 A continuous random variable x has the pdf (3)
 $f(x) = \begin{cases} a+bx & 0 \le x \le 1\\ 0 & clsewhere \end{cases}$ If the mean of the distribution is $\frac{1}{3}$, find the values of a, b.
8 Write 4 properties of normal distribution. (2)
9 Write the normal equations of the curve y = a +bx + cx². (3)
10 Two random variables have the regression lines with equations $3x + 2y = 26$ and $6x + y = 31$. Find the mean values and the correlation coefficient between x and y. (2)
PART – B (50 Marks)
11 a) Show that $J(\frac{u,v}{x,y}) = |f'(z)|^2$ where f(z) = u(x, y) + iv(x, y), and J is the Jabocian. (5)
b) State and prove Cauchy's integral formula. (5)

b) Expand
$$\frac{7z-2}{(z+1)z(z-2)}$$
 in the region 1<|z + 1|<3 (5)

.....2

- 13 a) State and prove Baye's theorem.
 - b) If X is a random variable with probability distribution function

Х	0	1	2	3	4	5	6
P(x)	0.15	0.1	0.05	0.3	0.2	0.1	0

find E(x + 1), E(3x + 2), V(3x + 4).

- 14 a) Derive the MGF of normal distribution.
 - b) Two random samples of sizes 9 & 6 are given the following values of the variate. (5)

Sample-I	15	22	28	26	18	17	29	21	24
Sample-II	8	12	9	16	15	10	-	-	-

Test the difference of estimates of the population variances at 5% level of significance. $[F_{0.05} \text{ at } (8, 5) \text{ df} = 3.69]$.

15 Find the correlation coefficient between x & y for the following values and also the regression lines. (10)

х	1	2	3	4	5	6	7	8	9	10
У	10	12	16	28	25	36	41	49	40	50

- 16 a) Prove that $u = x^2 y^2$, $v = \frac{y}{x^2 + y^2}$ are harmonic. (5)
 - b) Find the bilinear transformation which maps the points z = -1, i, 1 into w = 1, -i, -1. (5)
- 17 a) Fit a Poisson distribution to the following data.

	x	0	1	2	3	4
	f(x)	46	38	22	9	1
b) Eva	aluate $\int_{0}^{2\pi}$	$\frac{d\theta}{2+\sin}$	$\overline{\theta}$.		***	***

(5) (5)

(5)

(5)