FACULTY OF ENGINEERING
 B.E. 2/4 (Civil) I Semester (Suppl.) Examination, July 2014 MATHEMATICS - III (Common to All Excpt. I.T.)

Time: 3 Hours]
[Max. Marks: 75

Note: Answer all questions from Part \boldsymbol{A}, and any five questions from Part B.

> PART-A

1. Form the partial differential equation by eliminating the arbitrary function

$$
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right) .
$$

2. Solve $p^{2}-q^{2}=x-y$. 2
3. Define even and odd functions with examples. 3
4. Find a_{0} in the Fourier series expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ in $[-\pi, \pi]$. 2
5. Solve $3 \frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}=u$ with $u(t, 0)=6 e^{-t}$.
6. Show that $e^{-a t}$ sinbx is a solution of one dimensional heat equation. 2
7. Write the Lagrange's formula for unequal intervals. 3
8. Explain bisection method to find a real root of $f(x)=0$. 2
9. State and prove convolution theorem for z-transforms. 3
10. Prove that $|z|\left\{a^{n}\right\}=\frac{z}{z-a}$.

> PART - B
11. a) Eliminate ϕ from $\phi(x+y+z, x y z)=0$. 5
b) Find the complete integral of $p^{2} q^{2}(p x+q y-z)=2$.
12. a) Find the Fourier series expansion of $f(x)=x$ in $[-\pi, \pi]$ 5
b) Find the Fourier sine and cosine series for the function $f(x)=1$ in $0<a<2$.
13. Find the solution of the one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the boundary conditions $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(\mathrm{l}, \mathrm{t})=0$ for $\mathrm{t}>0$ and $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}$ where $/$ is the length of the rod.
14. a) Apply Gauss Seidal method to solve
$2 x+y+6 z=9,8 x+3 y+2 z=13, x+5 y+z=7$.
b) Compute $\frac{d y}{d x}$ at $x=1.5$ for the following data:

x	0	1	2	3	4	5
y	1	2	5	7	14	26

15. a) Find the inverse Z transform of $\frac{z^{2}}{(z-2)(z-3)}$.
b) Solve $y_{x+2}+y_{x+1}+y_{n}=z^{n}$ with $y_{0}=y_{1}=0$ using Z - transforms.
16. a) Find the Z-transform of $\left\{(n+1)^{2}\right\}$. 5
b) Find a real root of $x^{5}-5 x^{2}+3=0$ by Newton's Raphson method.
17. a) Solve $r=4 t$ by Monge's method. 5
b) Solve $(y-z) p+(x-y) q=z-x$. 5
