

FACULTY OF ENGINEERING B.E. 2/4 (Civil) I Semester (Suppl.) Examination, July 2014 MATHEMATICS – III (Common to All Excpt. I.T.)

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A, and any five questions from Part B.

PART – A

1. Form the partial differential equation by eliminating the arbitrary function

	$z = y^2 + 2 f\left(\frac{1}{x} + \log y\right).$	3
2.	Solve $p^2 - q^2 = x - y$.	2
3.	Define even and odd functions with examples.	3
4.	Find a_0 in the Fourier series expansion of $f(x) = x \sin x$ in $[-\pi, \pi]$.	2
5.	Solve $3\frac{\partial u}{\partial t} + 2\frac{\partial u}{\partial x} = u$ with $u(t, 0) = 6 e^{-t}$.	3
6.	Show that e^{-at} sinbx is a solution of one dimensional heat equation.	2
7.	Write the Lagrange's formula for unequal intervals.	3
8.	Explain bisection method to find a real root of $f(x) = 0$.	2
9.	State and prove convolution theorem for z-transforms.	3
10.	Prove that $ z \{a^n\} = \frac{z}{z-a}$.	2

PART – B

11. a) Eliminate ϕ from ϕ (x + y + z, xyz) = 0.5b) Find the complete integral of p^2q^2 (px + qy - z) = 2.5

(This paper contains 2 pages)

Code No. : 6009/S

12. a) Find the Fourier series expansion of $f(x) = x$ in $[-\pi, \pi]$	5
b) Find the Fourier sine and cosine series for the function $f(x) = 1$ in $0 < a < 2$.	5
13. Find the solution of the one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ with the	;
boundary conditions u (0, t) = u (<i>l</i> , t) = 0 for $t > 0$ and u (x, 0) = x where <i>l</i> is the length of the rod.	, 10
14. a) Apply Gauss Seidal method to solve 2x + y + 6z = 9, $8x + 3y + 2z = 13$, $x + 5y + z = 7$.	5
b) Compute $\frac{dy}{dx}$ at x = 1.5 for the following data :	5
x 0 1 2 3 4 5	
y 1 2 5 7 14 26	
2	
15. a) Find the inverse Z transform of $\frac{z^2}{(z-2)(z-3)}$.	5
b) Solve $y_{x+2} + y_{x+1} + y_n = z^n$ with $y_0 = y_1 = 0$ using Z – transforms.	5
16. a) Find the Z-transform of $\{(n + 1)^2\}$.	5
b) Find a real root of $x^5 - 5x^2 + 3 = 0$ by Newton's Raphson method.	5
17. a) Solve r = 4t by Monge's method.	5
b) Solve $(y - z) p + (x - y) q = z - x$.	5