FACULTY OF ENGINEERING

B.E. 2/4 (CSE) I-Semester (Supplementary) Examination, July 2014

Subject : Logic and Switching Theory

Time : $\mathbf{3}$ hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Convert the given function into other canonical form.

$$
F(x, y, z)=x+y z
$$

2 Write the Boolean expression and logic symbol for the given Truth table.

x	y	F
0	0	0
1	0	1
0	1	1
1	1	0

3 Realize the AND gate functionality using NOR-gates only.
4 Define the terms prime implicant and essential prime implicant. Give example. 2
5 Realize the function $F(x, y, z)=\Sigma(0,1,2)$ using multiplexers only. 3
6 Write a VHDL-code to design a 2-bit adder circuit. 3
7 Write the excitation and characteristic tables for JK and RS flip-flops. 2
8 Write the VHDL-code to design 2-bit counter.
9 Determine whether a given function $F(x, y, z)=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}$ is symmetric or not.
10 Draw the relay contact network for the given function $F(a, b, c)=a+b^{\prime} c$.
PART - B (50 Marks)
11 a) Represent the given decimal number into octal, hexadecimal and binary form.
i) $(12.50)_{10}$
ii) $(34.25)_{10}$
b) Convert the given function into canonical sum-of-products and canonical product-of-sums form.

$$
F(A, B, C)=A B^{\prime}+C^{\prime}
$$

12 a) Simplify the Boolean function into minimum number of literals using K-map method.

$$
F(w, x, y, z)=\sum(0,3,5,9,11)+\sum_{d}(1,2)
$$

b) Simplify the function using tabulation method.

$$
F(x, y, z)=\sum(0,1,2,3,6,7)
$$

