Code No. 6003 / M FACULTY OF ENGINEERING and INFORMATICS B.E. I – Year (Main) Examination, June 2014

Subject : Mathematics – II

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART – A (25 Marks)

1 Form the differential equation by eliminating arbitrary constants a, b from

	$y = ae^{3x} + be^{5x}$.	(2)
2	Solve $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$	(3)
3	Solve $y'' - y = 0$, when y = 0 and $y' = 2$ at x = 0.	(2)
4	Find the particular integral of $(D^2 + 1)y = 8e^{-x}$.	(3)
5	Classify the singular points of $(1 - x^2)y'' - 2xy' + 2y = 0$.	(2)
6	Prove that $P_n(1) = 1$.	(3)
7	Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	(2)
8	Prove that $\int_{0}^{\infty} \frac{x^{C}}{C^{x}} dx = \frac{(C+1)}{(\log C)^{C+1}}, C > 1.$	(3)
9	Find the Laplace transform of e ^{-t} cost.	(2)
10	Find inverse Laplace transform of $\frac{s^2 - s + 2}{s(s-3)(s+2)}$.	(3)
	PART – B (50 Marks)	
11	PART – B (50 Marks) a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter.	(5)
11		(5) (5)
	a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter. b) Solve $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$. a) Using the method of variation of parameters solve (D ² +1) y = x.	
12	a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter. b) Solve $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$. a) Using the method of variation of parameters solve $(D^2+1)y = x$. b) Solve $(D^2 - 4D + 2)y = 12e^x \sin 2x$.	(5) (5) (5)
12	a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter. b) Solve $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$. a) Using the method of variation of parameters solve $(D^2+1)y = x$. b) Solve $(D^2 - 4D + 2)y = 12e^x \sin 2x$. Obtain the series solution of the equation	(5) (5)
12 13	 a) Find the orthogonal trajectories of r = ce^θ, where C is the parameter. b) Solve dy/dx - y = y² (sin x + cos x). a) Using the method of variation of parameters solve (D²+1) y = x. b) Solve (D² - 4D + 2) y = 12e^x sin2x. Obtain the series solution of the equation x²y" + xy' + (x² - 4)y = 0 about x = 0, 	(5) (5) (5)
12 13	a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter. b) Solve $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$. a) Using the method of variation of parameters solve $(D^2+1)y = x$. b) Solve $(D^2 - 4D + 2)y = 12e^x \sin 2x$. Obtain the series solution of the equation	(5) (5) (5)
12 13	 a) Find the orthogonal trajectories of r = ce^θ, where C is the parameter. b) Solve dy/dx - y = y² (sin x + cos x). a) Using the method of variation of parameters solve (D²+1) y = x. b) Solve (D² - 4D + 2) y = 12e^x sin2x. Obtain the series solution of the equation x²y" + xy' + (x² - 4)y = 0 about x = 0, 	(5) (5) (5) (10)
12 13	a) Find the orthogonal trajectories of $r = ce^{\theta}$, where C is the parameter. b) Solve $\frac{dy}{dx} - y = y^2(\sin x + \cos x)$. a) Using the method of variation of parameters solve $(D^2+1) y = x$. b) Solve $(D^2 - 4D + 2) y = 12e^x \sin 2x$. Obtain the series solution of the equation $x^2y'' + xy' + (x^2 - 4)y = 0$ about $x = 0$, a) Prove that $\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$	(5) (5) (10) (5)

.....2

(5)

- 2 –

15 a) Apply convolution theorem to evaluate

$$L^{-1}\left[\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right].$$

- b) Use Laplace transform to solve $y' y = e^x$ given that y(0) = 1. (5)
- 16 a) Find the general solution and singular solution of the Clairaut's equation (5) $y = (x a) p p^2$.
 - b) Solve the initial value problem y'' 2y' + 3y = 0 with y(0) = 1, y'(0) = 0. (5)

17 a) Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$
 if $m \neq n$. (5)

b) Find the Laplace transform of t $\sin^2(3t)$. (5)
