Case 1) Planes or surfaces \|to HP/VP

a) Planes $\|$ to $\mathrm{HP}\left(\perp_{\text {to }} \mathrm{VP}\right)$

$$
\begin{aligned}
& \text { TV } \left.\longrightarrow \quad \begin{array}{l}
\text { True shape } \\
\text { FV }
\end{array}\right]=1 n e
\end{aligned}
$$

Projections of planes means drawing the front view, top views and sometimes, side views.

Always remember, in one view, the projection of plane is the true shape and in other view, it is a line.

$$
\text { 1) } \quad \begin{aligned}
& \text { FV } \\
& \text { TV }
\end{aligned} \rightarrow \quad \begin{aligned}
& \text { True shape } \\
& \text { Line }
\end{aligned}
$$

2) \quad TV $\longrightarrow \quad$ True shape

FV \rightarrow Line
Hence the problems on planes simply involves FV deciding where to draw the shape. If this is decided correctly, the other view is a line. Hence most important concept in planes is to decide where the shape is to be drawn.

There are 3 cases of planes problems. They are as follows:

1) Planes Parallel to HP or VP (1 stage)
2) Planes inclined to HP or VP (2 stages)
3) Planes inclined to both HP \& VP (3 stages).

Planes are also called as surfaces or lamina.

Edge \& Corner concept:

If an edge is in HP or VP, the starting side of the polygon is vertical.

If corner is in HP or VP, the starting side should be horizontal.

For a Square, Corner means sides at $\mathbf{4 5}^{\mathbf{0}}$ to the $x-y$ line.

If edge is || to HP or VP, it is a horizontal
If edge is \perp to HP or VP, it is vertical.

Simple rule

$$
\begin{aligned}
& \text { Plane } \| \text { to } \mathrm{HP} \rightarrow \text { shape w.r.t VP (TV) } \\
& \text { Plane } \| \text { to VP } \rightarrow \text { shape w.r.t HP (FV) }
\end{aligned}
$$

In this case, following data to be noted:

1) Shape of plane
2) Plane || to HP/VP (where to draw shape)
3) Edge(side)/ Corner in HP/VP or Side inclined to HP/VP (for starting side)

E GRAPHICS: PROJECTION OF PLANES	S.RAMANATHAN Ph: 9989717732	ASST PROF MVSREC rama_bhp@yahoo.com

12.2) An equilateral triangle of 50 mm sides has its plane parallel to HP and 25 mm above xy. Draw its projections if one of its sides is inclined at 45^{0} to the VP.

Ans) Given data:

Logic: \quad Since the plane is $\|$ to HP, shape is w.r.t VP (Top View) and line is in FV.

Steps:

1) Draw a side of \triangle at 45° below $x y$.
2) Cut arcs from $a \& b$ to get c. Join abc.
3) Project lines from $a, b \& d$ to get line $a^{\prime} b^{\prime} c^{\prime}(F V)$ at 25 mm above $x y$ line.

Note: From Projection of Planes onwards, we have to show the position of reference planes (VP \& HP) with respect to $x-y$ line.

Always note that VP is above $x-y$ line and $H P$ is shown below $x-y$ for the First Angle Projection.
12.3) A square of 40 mm has a corner in HP and 20 mm in front of VP. All sides of the square are equally inclined to HP and || to VP. Draw its projections.

Ans) Given data:

Logic: \quad Since the plane is $\|$ to VP, shape is w.r.t HP (Front View) and line is in TV.

Steps:

1) Draw a square a'b'c'd' of 40 mm at 45^{0} in FV, with a corner touching $x-y$.
2) Project lines from a'b'c'd' to get line abcd (TV) at 20 mm below $\mathrm{x}-\mathrm{y}$.

E GRAPHICS: PROJECTION OF PLANES	S.RAMANATHAN Ph: 9989717732
Case 2) Planes (surfaces) inclined to HP /VP	
When planes are inclined to HP or VP, then its reduced shape will be seen in the opposite view.	$\underline{$ ASST PROF rama_bhp@yahoo.com $}$Simple rule
Plane Inclined to HP \rightarrow RS w.r.t VP (TV)	
Plane Inclined to VP \rightarrow RS w.r.t HP (FV)	

a) Planes (surfaces) inclined to HP (\perp to VP)

$$
\begin{array}{cll}
\text { TV } & \longrightarrow & \text { Reduced shape (RS) } \\
\text { FV } & \longrightarrow & \text { Inclined Line (IL) }
\end{array}
$$

Note:

1) The Inclined line (IL) is of same length as the Horizontal line (HL). Only angle changes in $2^{\text {nd }}$ stage.
2) Projectors from Inclined line (IL) and TS gives the Reduced Shape (RS)
b) Planes (surfaces) inclined to VP $\left(\perp_{\text {to }}\right.$ HP)

FV $\quad \longrightarrow \quad$ Reduced shape (RS)
TV $\quad \longrightarrow \quad$ Inclined Line(IL)

In this case, following data to be noted:

1) Shape of plane
2) Plane $\underline{\text { e }}$ to HP/VP (where to draw shape)
3) Edge(side)/ Corner in HP/VP (For starting side)

Steps to solve problems on Inclined planes:

1) Assume that plane is parallel \& draw TS \& HL in ${ }^{\text {st }}$ stage.
2) Draw IL and then get RS in $2^{\text {nd }}$ stage.

Note: the following abbreviations will be used throughout the topic to make it easier for understanding.

TS: \rightarrow True shape.
RS: \rightarrow Reduced Shape.
HL: \rightarrow Horizontal Line (Projection of TS)
IL: \rightarrow Inclined Line (Plane angle; Length is same as HL).
FV: \rightarrow Front View (Drawn above xy line)
TV: \rightarrow Top View (Drawn below xy line).

E GRAPHICS: PROJECTION OF PLANE
Case 3) Inclined to both HP \& VP.

In this case, Plane (surface) is inclined to HP/VP and Reduced Shape (Side/Diagonal/Diameter) is inclined to VP/HP and vice versa.

These problems are solved in 3 stages.

1) Solve the problem using Plane angle method and get the $\mathbf{1}^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {nd }}$ stages.
2) In the $\mathbf{3}^{\text {rd }}$ stage, turn the Reduced shape (by its side/diagonal/diameter) by the given angle and then its projections are matched point to point to get the final shape of the plane.

In total, there will be $\mathbf{6}$ figures to be drawn, $\mathbf{3}$ in FV and $\mathbf{3}$ in TV.
a) Planes (surfaces) inclined to HP(\perp to VP) \& shape (side/ diagonal/diameter) inclined to $V P$

1) TV $\quad \rightarrow \quad$ Reduced shape (RS)
2) FV $\quad \longrightarrow \quad$ Inclined Line (IL)
3) $\mathrm{TV} \longrightarrow$ Turn the RS at given angle and redraw it, using arcs.
4) FV \longrightarrow Draw projections now and match point to point from IL to get final shape (FS) of plane in FV.

Note:
The RS (5) should be turned about the side which is vertical or horizontal.
b) Planes (surfaces) inclined to VP $(\perp$ to $H P) \&$ shape (side/diagonal/diameter) inclined to HP

1) FV \longrightarrow Reduced shape (RS)
2) TV \longrightarrow Inclined Line (IL)
3) FV \longrightarrow Turn the RS at given angle and redraw it, using arcs.
4) TV \longrightarrow Draw projections now and match point to point from IL to get final shape (FS) of plane in FV.

Simple rule

$$
\begin{aligned}
& \text { Plane Inclined to HP } \rightarrow \text { RS w.r.t VP (TV) } \\
& \text { Plane Inclined to VP } \rightarrow \text { RS w.r.t HP (FV) }
\end{aligned}
$$

In this case, following data to be noted:

1) Shape of plane
2) Plane e to HP/VP (where to draw shape)
3) Edge (side) / Corner in HP/VP.
($1^{\text {st }}$ and $2^{\text {nd }}$ stage will be over here)
4) Shape angle VP/HP (side/diagonal/diam)

Steps to solve problems on Inclined planes:

1) Assume that plane is parallel \& draw TS \& HL in $1^{\text {st }}$ stage.
2) Draw IL and then get RS in $2^{\text {nd }}$ stage.
3) Turn the RS in the $3^{\text {rd }}$ stage and match projections from IL to get Final shape.

E GRAPHICS: PROJECTION OF PLANES		
12.6$)$	A square ABCD of 50 mm sides has its corner A in HP; its diagonal AC is inclined at $30^{\boldsymbol{0}}$ to HP \& diagonal BD at $45^{\boldsymbol{0}}$ to $\mathrm{VP} \&$ \\| $\boldsymbol{\&}$ to HP. Draw its projections.	

Ans) Given data:

Logic: \quad For squares and rhombus, if plane angles are not mentioned, then the diagonal angles are treated as plane angles and shape angles.
In this problem, AC is treated as Plane angle and BD is treated as shape angle. Reduced shape (RS) is w.r.t VP (Top View) and Inclined line (IL) is w.r.t HP (FV).

Steps:

1) In $\mathbf{1}^{\text {st }}$ stage, in $\mathbf{T V}$, draw square ($\mathbf{T S}$) abcd of 50 mm with starting side at 45^{0} \& HL a'b'c'd' on $x y$.
2) In $\mathbf{2}^{\text {nd }}$ stage, at 30^{0} draw IL $\mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}^{\prime} \mathbf{d}^{\prime}$ ' of same length as HL and get the RS by projections.
3) In $3^{\text {rd }}$ stage Rotate $\mathbf{b}_{1} \mathbf{d}_{1}$ at $45^{\mathbf{0}}$ to VP and draw RS. Take projections up and match point to point from IL to get Final Shape $\mathbf{a}_{\mathbf{1}}{ }^{\prime} \mathbf{b}_{\mathbf{1}} \mathbf{B}^{\mathbf{c}} \mathbf{c}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}{ }^{\prime}$.

12.8) Draw the projections of a circle of 50 mm diameter having its plane angle at 45° to HP \& its top view of diameter makes an angle of $30^{\mathbf{0}}$ to VP .

Ans) Given data:

Logic: Since the plane is inclined to HP, the RS is w.r.t VP (TV) and IL is w.r.t HP(FV). In the $3^{\text {rd }}$ stage, turn the RS about diameter by 30^{0} and match projections above to get final shape.

Steps:

1) In $1^{\text {st }}$ stage, in TV, draw a circle (TS) of 25 mm radius below $\mathbf{x y}$ and $\mathbf{H L} 1^{\prime} .2^{\prime} . .88^{\prime}$ on xy . Divide circle into 8 parts $1,2 \ldots 8$.
2) In $\mathbf{2}^{\text {nd }}$ stage, at $\mathbf{4 5}^{\mathbf{0}}$, draw IL $1^{\prime} .2^{\prime} . .8^{\prime}$ of same length as HL and get RS by projections.
3) In $3^{\text {rd }}$ stage, rotate 1_{1-5} by $\mathbf{4 5}$ to VP and draw RS. Take projections up and match point to point from IL to get Final Shape $\mathbf{1}_{1}{ }^{\prime} \mathbf{2}_{\mathbf{1}}{ }^{\prime} . . \mathbf{8}_{\mathbf{1}}$ '.

E GRAPHICS: PROJECTION OF PLANES	S.RAMANATHAN Ph: 9989717732	ASST PROF MVSREC rama_bhp@yahoo.com

Exercise Problems:

2) A regular hexagon of 40 mm sides has a corner on HP. Its surface is inclined at 45° to HP $\&$ the top view of the diagonal through the corner which is in HP makes an angle of 60^{0} with VP. Draw its projections.

Ans) Given data:

Logic: \quad Since the plane is inclined to HP, the RS is w.r.t VP (TV) and IL is w.r.t HP (FV). In the $3^{\text {rd }}$ stage, turn the RS about diagonal by 60^{0} and match projections above to get final shape.

Steps:

1) In $1^{\text {st }}$ stage, in $T V$, draw hexagon (TS) abcdef of 40 mm with starting side horizontal \& HL a'b'c'd'e'f' on xy.
2) In $\mathbf{2}^{\text {nd }}$ stage, at $\mathbf{4 5}^{\mathbf{0}}$ draw IL $\mathbf{a}^{\prime} \mathbf{b} . \mathbf{. f}^{\prime}$ of same length as $\mathbf{H L}$ and get the RS by projections.
3) In $3^{\text {rd }}$ stage Rotate $\mathbf{a}_{1} \mathrm{~d}_{1}$ at $\mathbf{6 0}{ }^{\mathbf{0}}$ to VP and draw RS. Take projections up and match point to point from IL to get Final Shape $\mathbf{a}_{\mathbf{1}}{ }^{\prime} \mathbf{b}_{\mathbf{1} . .} \mathbf{f}_{\mathbf{1}}{ }^{\prime}$.

4) A semi circular plate of $\mathbf{8 0} \mathbf{~ m m}$ diameter has its straight edge in the VP and inclined at $\mathbf{4 5}^{\mathbf{0}}$ to HP. The surface of the plate makes an angle of 30^{0} to VP. Draw its projections.

Ans) Given data:
$\left.\begin{array}{l}\text { Shape } \longrightarrow\end{array} \begin{array}{c}\text { Semi circle }, 80 \mathrm{~mm} . \\ \text { Plane Angle } \longrightarrow 0^{\circ} \text { to } \mathbf{~ V P ~}(\text { RS in FV) } \\ \text { Edge } \text { (side vertical) }\end{array}\right)$

Logic: \quad Since the plane is inclined to VP, the RS is w.r.t HP (FV) and IL is w.r.t VP (TV). In the $3^{\text {rd }}$ stage, turn the RS about side by 45° and match projections below to get final shape.

Steps:

1) In $1^{\text {st }}$ stage, in $\mathbf{F V}$, draw a semi circle (TS) of 40 mm radius above xy with starting side vertical and HL 1.2..7 on xy. Divide semi circle into equal parts $1,2 \ldots 7 .\left(30^{\circ}\right.$ each $)$.
2) In $\mathbf{2}^{\text {nd }}$ stage, at $\mathbf{3 0}^{\mathbf{0}}$, draw IL 1.2 .4 of same length as HL and get RS by projections.
3) In $3^{\text {rd }}$ stage, rotate $1^{\prime}-7^{\prime}$ by $\mathbf{4 5}^{\circ}$ to HP and draw RS. Take projections below and match point to point from IL to get Final Shape $\mathbf{1}_{1} \mathbf{2}_{\mathbf{1}} . . \mathbf{7}_{1}$.

Logic: \quad Since the Shape changes from isosceles to Equilateral in the FV, the plane angle is in the TV. Here plane angle is not given \& hence we first draw TS, HL, RS and then IL on the projectors of RS \& thus find IL Angle to VP.

Steps:

1) In $1^{\text {st }}$ stage, in $\mathbf{F V}$, draw Isosceles $-(T S)$ $\mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}^{\prime}$ of base 50 \& altitude 70 at mid of a'c' with starting side vertical \& HL abc on xy.
2) In $\mathbf{2}^{\text {nd }}$ stage, draw RS Equilateral $\boldsymbol{~ o f ~} 50$ sides at same level as TS. Draw arc of IL abc of same length as HL and project RS to cut IL and hence find the plane angle.
3) In $\mathbf{3}^{\text {rd }}$ stage Rotate $\mathbf{a}_{1}{ }^{\prime} \mathbf{c}_{1}{ }^{\prime}$ at $\mathbf{4 5}^{\mathbf{0}}$ to HP and draw RS. Take projections below \& match point to point from IL to get Final Shape $\mathbf{a}_{1} \mathbf{b}_{1} \mathbf{c}_{1}$.

S.RAMANATHAN Ph: 9989717732

ASST PROF MVSREC rama_bhp@yahoo.com
10) Draw a rhombus of diagonals $100 \& 60$ mm with the longer diagonal horizontal. The figure is the top view of a square of 100 mm long diagonals with a corner on the ground. Draw its front view and find the angle its surface makes with the ground.

Ans) Given data:

Logic: Since the Shape changes from Square to Rhombus in TV, the plane angle is in the FV. Here plane angle is not given and hence we first draw TS, HL, RS \& then IL on the projectors of RS \& thus find IL angle to HP (ground).

Steps:

1) In $1^{\text {st }}$ stage, in TV, draw a square of 100 mm diagonals (join corners of diagonals to get square) below xy \& HL a'b'c'd' on xy.
2) In $2^{\text {nd }}$ stage, draw RS Rhombus of $100 \&$ 60(vertical 100; horizontal 60 mm). Draw arc of IL a'c' of same length as HL and project RS to cut IL in FV \& hence find plane angle w.r.t HP (ground).
3) In $3^{\text {rd }}$ stage, rotate b-d by 90^{0} to VP \& draw RS. Take projections above and match point to point from IL to get Final Shape $\mathbf{a}_{1} \mathbf{b}_{\mathbf{\prime}} \mathbf{d}_{\mathbf{d}}$ '.

