UNIT II

Short Answer Questions

1. State the difference between first and third angle projections?

First Angle	Third Angle
The object lies in the first angle i.e. in front	The object lies in the Third angle i.e. behind of the VP and above HP
The object lies between the observer and the plane of projection.	The object lies between the observer and the plane of projection.
Top view is drawn below the front view	Top view is drawn above the front view

2. Define trace, HT, VT?

Trace: The points of intersection of a straight line extended if necessary with the reference plane are called traces of that line.
Horizontal Trace (HT): When a straight line is inclined to HP then the point of intersection of the line to the HP is called its horizontal trace and is generally represented by HT
Vertical Trace (VT): When a straight line is inclined to VP then the point of intersection of the line to the VP is called its vertical trace and is generally represented by VT
3. Draw the projections of a circle of diameter 50 mm , resting on one of its ends of the diameter on HP. Procedure

- Draw a circle of diameter 50 mm . to represent the top view.
- Divide the circle into 12 equal parts and mark a, b, c, d, e, f, g, h, l, j, k, l.
- Project from all the points i.e a, b, c, d, e, f, g, h, l, j, k, l. to meet xy at a', b', c', d', é, f', g', h', l', j', k', l'.

4. State the quadrants in which the following points are situated.
I. A point D, its top view is 35 mm below $X Y$ and its front view is on the $X Y$ line.
II. A point C, its top view is 35 mm above $X Y$ and its front view is 25 mm below the $X Y$ line

Answer: The point D is in I quadrant. While the point C is in III quadrant.
5. A line $A B 80 \mathrm{~mm}$ long inclined at 30° to HP and 45° to $V P$. Its end A is in the $V P$ and 20 mm above HP. Draw its projections.
Procedure:

- Draw a reference line xy. Mark point a' 20 mm above $x y$ and point a on xy.
- Draw 80 mm long line $a^{\prime} b_{1}^{\prime}$ inclined at 30° to $x y$
- Draw another 80 mm long line ab_{2} inclined at 45° to $x y$
- Project b_{1} ' to meet horizontal line from point ' a ' at b_{1}. Draw an arc with a as centre and radius $a b_{1}$ to meet the horizontal line from point b_{2} at point b. join ab to represent the top view.
- Project b_{2} to meet horizontal line from point a^{\prime} at b_{2}. Draw an arc with a^{\prime} as centre and radius $a^{\prime} b_{2}$ ' to meet the horizontal line from point b_{1} ' at b_{1}. Join $a^{\prime} b^{\prime}$ to represent the front view.

6. A line $A B, 60 \mathrm{~mm}$ long is parallel to 20 mm in front of the VP. The ends A and B of the line are 10 mm and 50 mm above the HP. Draw the projections and determine its inclination with HP and locate its traces.
Procedure

- Draw a reference line xy. Mark point a' 10 mm above xy and point a 20 mm below xy .
- Draw a horizontal line 50 mm above $x y$ as the locus of b'. Draw an arc with a' as centre and radius 60 mm to meet the locus of b' at point b'. join a'b' to represent the front view. Determine its inclination with $x y$ as the inclination of line $A B$ with HP.
- Draw the horizontal line from point a to meet projector from point b^{\prime} at point b. join $a b$ to represent the top view.
- Extend $a^{\prime} b^{\prime}$ to meet $x y$ at point h'.
- Project point h' to meet ab produced at point h. The point h denotes the HT.
- As the line is parallel to the VP., it has no VT.

7. A point A is 15 above $H P$ and 20 mm in front of VP. Another point B is 25 mm behind VP and 40 mm below HP. Draw the projections of A and B, keeping the distance between the projectors equal to 90 . Draw the straight line joining the top view and front views.

Procedure:

Draw two projectors 90 mm apart
Locate the front and the top views of the points A and B on the above projectors Join the front views a^{\prime}, b^{\prime} and the top views a, b.

8. A straight line is parallel to both HP and VP. It's one end is 25 mm behind VP and 60 mm above HP. Length of the line is 50 mm . Draw its projections. Locate its traces.

Procedure

Draw a reference line $x y$.
Mark point p' 60 mm above $x y$ and point p 25 mm below xy .
Draw a 50 mm long line $\mathrm{p}^{\prime} \mathrm{q}^{\prime}$ parallel to xy to represent its front view
Draw another 50 mm long line pq parallel to $x y$ to represent its top view.
As the line is parallel to both planes there will be no HT and VT , even though it is extended in both directions.

9. A regular pentagonal $A B C D E 25 \mathrm{~mm}$ side has its corner on A in the $H P$ and the side $C D$ parallel to the HP. Draw its projections when its plan is parallel to and 10 mm away from VP. Also draw its traces.
Procedure:
Draw a pentagon a'b'c'd'e' of 25 mm side in front view keeping a' on the reference line xy and the side c'd' parallel to $x y$.
Project from all the points of the front view on to the top view which is parallel and 10 mm below xy .

10. A regular hexagonal lamina of 20 mm side rests on its side on HP. It is parallel to and 15 mm away from VP. And it is in first quadrant. Draw the projections.

Procedure

Draw the xy line.
Draw a hexagon $1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 6^{\prime}$ of 20 mm side in front view such that one of the sides of the hexagon i.e. $5^{\prime} 6^{\prime}$ is in the HP and parallel to VP. Project from the front view $1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5$ ' 6^{\prime} to get the top view 123456 which is a straight line 15 mm away from xy .

1. A line $P Q$ is in the first quadrant. The end P is 50 mm in front of the $V . P$ and 25 mm above HP. The end Q is 10 mm in front of VP and above HP. The distance between the end projectors is 50 mm . and the line is inclined at 30° to the VP. Draw the projections of $P Q$ and find its true length and the inclination with the H.P.
Procedure:

- Draw a reference line xy. Mark points 0 and o_{1} on $x y$ such that $001=50 \mathrm{~mm}$
- On the projector through point o, mark point p' 25 mm above xy and point p 50 mm below xy .
- On the projector through 0_{1}, mark point q 10 mm below xy.
- Join pq to represent the top view.
- Draw a line from point p, inclined at 30° with $x y$ to meet the horizontal line through point q at point q_{2}. Measure its length as true length of line $P Q$.
- Project point q_{2} to meet the horizontal line through point p^{\prime} at q_{2}^{\prime}. Draw an arc with point p^{\prime} as centre and radius $p^{\prime} q_{2}^{\prime}$ to meet the projector from point q at point q^{\prime}. Join $p^{\prime} q^{\prime}$ to represent the final front view.
- Draw an arc with p as centre and radius $p q$ to meet the horizontal line through point p at q_{1}. Project q_{1} to meet the horizontal line through q^{\prime} at q_{1}. Join $p^{\prime} q_{1}$. Measure its inclination with xy as inclination with the HP.

2. A line $A B$ is 70 mm long is inclined at 30° to $H P$. Its front view measures 45 mm . The end P is 15 mm in front of the VP and 25 mm above HP. Draw the projection of the line PQ. Determine its traces and its inclination with VP.
Procedure:

- Draw a reference line xy. Mark point p' 25 mm above xy and point p 15 mm below xy.
- Draw a 70 mm long line $p^{\prime} q_{1}^{\prime}$ inclined at 30° to xy .
- Draw an arc with centre p^{\prime} and radius 45 mm to meet the locus line at q^{\prime}. Join $p^{\prime} q^{\prime}$ to represent the final front view.
- Draw an arc with centre p^{\prime} and radius = $p^{\prime} q^{\prime}$ to meet the horizontal line from point p^{\prime} at $q_{2}{ }^{\prime}$. Draw another arc with centre p and radius 70 mm to meet the projectors from $q_{2^{\prime}}$ at point q_{2}. Join pq_{2} and measure its inclination with VP
- Project point q_{1} to meet the horizontal line from point p at q_{1}. Draw an arc with centre p and radius pq_{1} to meet the horizontal line from point q_{2} at point q . join pq to represent the top view.

3. $F V$ of line $A B$ makes 45° with $X Y$ line and measures 60 mm . The TV makes 30° with $X Y$ line. End A is 15 mm above HP and it's VT is 10 mm below HP. Draw projections of line AB, determine inclinations with HP \& VP and locate HT, VT.

- Draw xy line, locate a' 15 mm above $x y$.
- Take 45° angle from a' and mark 60 mm on it and locate point b^{\prime}.
- Draw locus of VT, 10 mm below xy \& extend FV to this locus locate VT.
- a'b'h'VT lie on the same line.
- Draw projector from VT, and locate v on $x y$.
- At v draw an inclined line of inclination as TV (Assuming that its inclination can begin with v).
- Draw projector from b' and locate locus of b (TV)
- Now rotating views determine the true length and it's inclinations.

4. The front view of a line $A B$ measures 60 mm and makes an angle of 45° with the $X Y$. A is in the HP and the $V T$ of the line 15 mm above HP. The line is inclined at 30° to the VP. Draw the projections $A B$ and find its true length, inclination with HP and its HT.
Procedure:

- Draw the reference line xy and locate a' at any convenient point on it.
- Draw a line parallel to $x y$ and 15 mm above it. (locus of VT)
- Through a' draw an inclined line a'b' of length 60 mm and angle 45° and locate locus of b^{\prime}. Draw the projector from VT to meet xy at v .
- Rotate the line $V T-b^{\prime}$ about $V T$, to the position $V . T b_{2}{ }^{\prime}$, parallel to $x y$.
- Draw a projector through b_{2} '.
- Through v, draw an inclined line at 30° to xy meeting the above projector at b_{2} and locate the locus of b.
- Draw a projector through b' to get b.
- Join b, v and extend, meeting the projector through a ' at a.
- Rotate ab about a to the position ab1 parallel to $x y$
- Through b_{1} draw a projector meeting at $b_{1}{ }^{\prime}$

5. One end of line $A B$ is 10 mm above Hp and other end is 100 mm in-front of VP. It's Fv is 45° inclined to xy while it's HT \& VT are 45 mm and 30 mm below xy respectively. Draw projections and find TL with it's inclinations with Hp \& VP.
Procedure

- Draw the reference line xy.
- Draw horizontal lines 10 mm above $x y$ as the locus of $a^{\prime}, 30 \mathrm{~mm}$ below $x y$ as the locus of v, 45 mm below $x y$ as the locus of h and 100 mm below $x y$ as locus of b.
- At a' draw an inclined line of 45° to $x y$. Extend a' to meet the reference line at h. Locate HT and V .
- Draw projector from VT to meet the xy line at v .
- Join vHT and extend it to meet the locus of b at b. Join ab to represent the final top view (FTV).
- Draw a projector from b to meet ha' at locus of b^{\prime}. Join $a^{\prime} b^{\prime}$ to represent the final front view (FFV).
- Draw an arc with a as centre and radius equal to ab to meet the horizontal line from point a at b_{1}.
- Project point b_{1} to meet the horizontal line from point b^{\prime} at point $b_{1}{ }^{\prime}$. Join $a^{\prime} b_{1}{ }^{\prime}$. Measure $a^{\prime} b_{1}{ }^{\prime}$ as the true length of $A B$ and its inclination with $x y$ as θ.
- Draw an arc with a^{\prime} as centre and radius $a^{\prime} b^{\prime}$ to meet the horizontal line from point a^{\prime} at point $b_{2}{ }^{\prime}$. Project point $b_{2}{ }^{\prime}$ to meet horizontal line from b at b_{2}. Join $a b_{2}$. The length of $a b_{2}$ should be equal to that of $a^{\prime} b_{1}^{\prime}(T L)$. Measure its inclination with $x y$ and denote it as ϕ.

6. One end of a straight line $A B$ is 20 mm above HP and 30 mm in front VP. The other end is 80 mm above HP and 70 mm in front VP. The distance between the end projectors are 60 mm apart. Draw the projections of the line \& find its true length, true inclination with HP \& VP and locate traces. Procedure:

- Draw a reference line xy. Mark points 00_{1} on it such that they are 60 mm apart.
- On the vertical projector through o mark point p' 20 mm above $x y$ and point $p 30 \mathrm{~mm}$ below $x y$.
- On the vertical projector through 0_{1}, mark point q' 80 mm above xy and point q 70 mm below $x y$.
- Join p'q' and pq to represent the front and the top views of the line.
- Draw an arc with centre p and radius $p q$ to meet the horizontal line from point p at $q 1$.
- Project point q1 to meet the horizontal line ab through point q' at point q_{1}.
- Join $p^{\prime} q_{1}{ }^{\prime}$. The length $p^{\prime} q_{1}{ }^{\prime}$ represents the true length of $p q$. The inclination of $p^{\prime} q_{1}{ }^{\prime}$ with $x y$ represents the true inclination with HP.
- Draw an arc with centre p' and radius p'q' to meet the horizontal line from point p' at point q_{2}.
- Project point q_{2}^{\prime} to meet the horizontal line cd through point q at q_{2}.
- Join pq_{2}. The length pq_{2} represents the true length and the inclination of pq_{2} represents true inclination with VP.

7. A rectangular plane of edges 35 mm and 70 mm is resting on an edge in the HP. The surface is inclined to the HP such that the top view appears as a square. Draw its projections when the edge resting on the HP is inclined at 30° to VP.

Procedure

First Stage
Draw a rectangle abcd keeping side ab perpendicular to $x y$ to represent the top view. Project the corners to xy and obtain the front view.

Second Stage

Draw a square abcd of 35 mm side on the locus line from points a, b, c and d of the first stage. From d extend the projector in the front view, with a' as centre and radius equal to TL mark d' on the projector. Now join a'd' and determine the true inclination with HP.
Third stage
Reproduce the top view of the second stage keeping ab inclined at 30° to $x y$. Obtain $a^{\prime} b^{\prime} c^{\prime}$ and d^{\prime} in the front view by joining the points of intersection of the projectors from points a, b, c and d of the third stage with the corresponding locus lines from points $a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime} of the second stage. Join $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$.

8. A rhombus of diagonals 40 mm and 70 mm long respectively has one end of it's longer diagonal in HP while that diagonal is 35° inclined to HP. If the top-view of the same diagonal makes 40° inclination with VP, draw it's projections.

Procedure:

First Stage

Draw a rhombus abcd keeping the diagonal parallel to $x y$ and diagonal bd perpendicular to the $x y$ to represent the top view. Project from all the corners to $x y$ and obtain a'c' as its corresponding front view.

Second Stage

Redraw the front view of the first stage keeping a' on $x y$ and a'c' inclined at 45° to xy . Obtain the points $a_{1}, b_{1}, c_{1}, d_{1}$ in the top view by joining the points of intersection of the projectors from points $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ of the second stage with the corresponding locus lines of the projectors from points a, b, c, d of the first stage. Join $a_{1} b_{1} c_{1} d_{1}$

Third Stage

Reproduce and redraw the top view of the second stage keeping the diagonal $a_{1} c_{1}$ inclined at 40° to VP. Obtain all the points $a_{1}{ }^{\prime}, b_{1}, c_{1}, d_{1}$ ' in the front view by joining the points of intersection of the projectors from points $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}$ of the third stage with the corresponding locus lines of $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}, \mathrm{d}^{\prime}$ of the second stage. Join $a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, c_{1}{ }^{\prime}, d_{1}$ ' to get the final front view.

9. An equilateral triangle of negligible thickness 30 mm is inclined to HP at 45° and has a corner 15 mm above HP and 25 mm in front of VP. Draw its projections when the top view of a side containing the corner makes an angle of 15° to VP.
Procedure
First Stage
Drawn an equilateral triangle 123 keeping the apex 25 mm away from HP and the base perpendicular to xy . This is the top view. Project from all the corners to xy and obtain $1^{\prime} 2^{\prime} 3^{\prime}$ as the front view.
Second Stage
Redraw the front view of the first stage by rotating it with given inclination 45° to xy , obtain points $1_{1} 2_{1} 3_{1}$ of the top view by joining the points of intersection of projectors from the points $1^{\prime} 2^{\prime} 3^{\prime}$ of second stage with the locus lines of 123 of the first stage.
Third Stage
Reproduce the top view of the second stage keeping the corner inclined at 15° to VP. Project form it the final front view.

10. Draw the projections of a pentagonal plane, side 25 mm resting on the H.P on one of its edges. The plane of the pentagon is inclined at 45° to the H.P. and the perpendicular drawn from the midpoint of the resting edge makes an angle of 30° with the V.P.

First Stage

Draw the top view abcde with an edge ab perpendicular to $x y$ line after assuming the plane to $H P$ and lying in it. Project the corresponding front view a'b'c'd'e'.

Second Stage

Tilt the front view at an angle of 45° with HP in such a way that the edge a'b' touches xy line.
Project the second top view $a_{1} b_{1} c_{1} d_{1} e_{1}$
Third Stage
Reproduce the second top view such that $0_{1} d_{1}$ the perpendicular from the midpoint of the resting edge makes 30° with the VP. Project the final front view.

