
(v) Since data on HT or β is not given, we take the deviation of drawing TL at angle Φ from v itself. Actually, we know that TV at angle β should pass through v or HT. Here, we draw TL at Φ from v.

E GRAPHICS: PROJECTION OF LINES
(PROBLEMS ON TRACES)-Model 2
(vi) Now, a $2^{\text {nd }}$ deviation is used in getting the locus lines of end B.

The locus line of B lies on line through v but $F V$ is on VT line, we use (v, VT) as base points for drawing the arcs

This is explained as below:
To get TL from FV, we know that FV has to be rotated about a' to same as a' level \& projected onto the TL line to get the locus of B.

Here, we rotate FV about VT instead of a'.
With VT as centre \& VT- $b_{2}{ }^{\prime}$ as radius, draw an arc to VT level at $b_{1}, \&$ project onto TL line through \mathbf{v} to get \mathbf{b}_{1}.

On b_{1}, draw a line $\boldsymbol{\|}$ to $x y$ to get the locus of B.

(vii) Now to get the TV, project \mathbf{b}_{2} ' on locus of B to get \mathbf{b}_{2}.

Join $v-b_{2}$ and draw projector from a' to get \underline{a} on $v-b_{2}$. HT lies on \underline{a} itself as $a-b_{2}$ is the TV. $\mathrm{a}^{-b_{2}}$ represents the Top View TV at angle β.

S.RAMANATHAN	ASST PROF MVSREC
Ph: 9989717732	rama_bhp@yahoo.com

Thus, in this problem, there are 2 lines passing through v instead of 1 in usual case.

Finally the true length has to be shown from a'. To get the TL, rotate the TV a-b b_{2} about a \& project onto locus line through $\mathbf{b}_{2}{ }^{\prime}$ to get b^{\prime}.
$a^{\prime} b^{\prime}$ is the TL at angle $\boldsymbol{\theta}$.

The answer is as follows:
$\mathrm{TL}=74 \mathrm{~mm} ; \theta=38^{\mathbf{0}} ; \boldsymbol{\beta}=\mathbf{4 1}^{\mathbf{0}} ; \mathbf{H T = 1 2}$ below xy .

E GRAPHICS: PROJECTION OF LINES
(PROBLEMS ON TRACES)-Model 2
(vi) Now, a $2^{\text {nd }}$ deviation is used in getting the locus lines of end B.

The locus line of B lies on line through v but $F V$ is on VT line, we use (v, VT) as base points for drawing the arcs

This is explained as below:
To get TL from FV, we know that FV has to be rotated about b ' to same as b ' level \& projected onto the TL line to get the locus of A.

Here, we rotate FV about VT instead of b’.
With VT as centre \& VT- \mathbf{a}_{2} ' as radius, draw an arc to VT level at a_{1} ’ $\&$ project onto TL line through v to get b.

On b, draw a line \|to xy to get the locus of B.

(vii) Now to get the TV, project \mathbf{a}_{2} ' on locus of B to get \mathbf{a}_{2}.

Join $v-a_{2}$ and draw projector from b^{\prime} to get b on $v-b_{2} . b-a_{2}$ is the TV.
$\mathrm{a}^{-b_{2}}$ represents the Top View TV at angle β.
S.RAMANATHAN Ph: 9989717732

ASST PROF MVSREC rama_bhp@yahoo.com

To get TL b'-a', rotate TV b-a \mathbf{a}_{2} about b to a level $\&$ project to locus line of A in HP to get a^{\prime}.

TL lies on this line

Join b'-a' to get TL at angle $\boldsymbol{\theta}$ with HP.
To get HT, project from h onto TV extended.

