E GRAPHICS:
(PROBLEMS ON TRACES)-Model 1
1) The distance between the end projectors
of a line AB is 70 mm and the projectors
through the traces are 100 mm apart. The end A
of the line is 10 mm above HP. The HT of the
line is 25 mm in front of VP and the VT is 50
mm above the HP. Draw the projections of the
line \& determine its inclinations with HP \& VP.

Ans) Given data:

Dist between the projectors ($\mathbf{d}_{\mathbf{p}}$) = $\mathbf{7 0}$
Dist between the traces (\mathbf{d}_{T}) $\quad=\mathbf{1 0 0}$
End \mathbf{A} from HP (a') (above HP) $=\mathbf{1 0}$
HT (below xy as it is in front of VP) $=\mathbf{2 5}$
VT (above xy as it is in above HP) $=\mathbf{5 0}$
Logic:
$\rightarrow \quad$ Whenever distance between traces $\left(\mathrm{d}_{\mathrm{T}}\right)$ is given, draw two vertical lines at the given distance to mark h \& v on x-y where these two lines cut $\mathrm{x}-\mathrm{y}$.
$\rightarrow \quad$ Onh \& v, locate HT \& VT.
$\rightarrow \quad$ Join (h, VT) \& (v, HT). On these lines, the Front View (FV) \& Top View (TV) will lie.
$\rightarrow \quad$ Locate starting point a' \& then draw 2 vertical lines (d_{p}) starting from a' which will cut (h, VT) \& (v, HT).
$\rightarrow \quad$ Since the FV \& TV lie between d_{p}, we can get the FV \& TV. Then the True Length (TL) \& angles can be found.
Steps:
i) Draw x-y line \& draw 2 vertical lines (d $\mathrm{d}_{\mathrm{T}} \mathbf{1 0 0} \mathbf{~ m m}$ apart. Mark h \& v at points where these 2 lines cut $x-y$ line.

(ii)

(iv) Now join (h, VT) \& (v, HT).

(v) To mark a', draw a line \|| to $x-y$ (above) at 10 mm cutting (h, VT) at a'.

If we observe the above figure, the FV \& TV will lie on lines joining (h, VT) \& (v, HT).

(ii) Below $x-y$, draw a line $\|$ to $x-y$ at 60 mm \& the point where it cuts the line through h, mark HT.
(iii) Similarly, above $x-y$, draw a line $\|$ to $x-y$ at 36 mm \& the point where it cuts the line through v , mark VT.

(iv) Now join (h, VT) \& (v, HT).

(v) To mark a', since it is on HP, h itself becomes a'.

If we observe the above figure, the FV \& TV will lie on lines joining (h, VT) $\mathcal{\&}(v, H T)$.

E GRAPHICS: \quad PROJECTION OF LINES

This is Prob 10.28 of pg 208 in text book.

3) The distance between the end projectors of a line $A B$ is 70 mm and the projectors through the traces are 110 mm apart. The end A of the line is 10 mm above HP. If the top view $\&$ front view of the line make $30^{\circ} \& 60^{\circ}$ with $x y$ respectively, draw the projections of the line and find the true length, inclinations with HP \& VP \& the traces.

Ans) Given data:

Dist between the projectors $\left(\mathbf{d}_{\mathbf{p}}\right) \quad=70$
Dist between the traces $\left(\mathbf{d}_{\mathbf{T}}\right) \quad=\mathbf{1 1 0}$
End \mathbf{A} from HP (a') (above HP) $=\mathbf{1 0}$
$\boldsymbol{\alpha}$ (angle made by FV with xy) $=\mathbf{6 0}^{\mathbf{0}}$
$\boldsymbol{\beta}$ (angle made by TV with xy) $=\mathbf{3 0}^{\mathbf{0}}$

Logic:

$\rightarrow \quad$ Whenever distance between traces $\left(\mathrm{d}_{\mathrm{T}}\right)$ is given, draw two vertical lines at the given distance to mark h \& v on x-y where these two lines cut $\mathrm{x}-\mathrm{y}$.
$\rightarrow \quad$ On h \& v, draw lines at $60^{\circ} \& 30^{\circ}$ to cut the \mathbf{d}_{T} at VT \& HT respectively.
$\rightarrow \quad$ Join (h, VT) \& (v, HT). On these lines, the Front View (FV) \& Top View (TV) will lie.
$\rightarrow \quad$ Locate starting point \mathbf{a}^{\prime} \& then draw 2 vertical lines (d_{p}) starting from \mathbf{a} ' which will cut (h, VT) \& (v, HT).
$\rightarrow \quad$ Since the FV \& TV lie between d_{p}, we can get the FV \& TV. Then the True Length (TL) \& angles can be found.
Steps:
i) Draw x-y line \& draw 2 vertical lines
 points where these 2 lines cut $x-y$ line.

(ii) On h, draw a line at 60° to cut v at VT.
(iii) On v, draw a line at 30° to cut h at HT.

Measure and find out distances of HT \& VT.

(iv) To mark a', draw a line || to x-y (above) at 10 mm cutting (h, VT) at a'.

If we observe the above figure, the FV \& TV will lie on lines joining (h, VT) $\mathcal{\&}(v, H T)$.

E GRAPHICS:
PROJECTION OF LINES
(PROBLEMS ON TRACES)-Model 1

Ans) Given data:

$\boldsymbol{\alpha}$ (angle made by FV with xy) $\quad=\mathbf{3 0}^{\mathbf{0}}$
End \mathbf{A} from HP (a')(above HP) $=\mathbf{1 0}$
HT (below xy as it is in front of VP) $=\mathbf{4 5}$
VT (below xy as it is below HP) = $\mathbf{3 0}$
End B (locus of B) (below xy) $=\mathbf{1 0 0}$
Logic: Since FV angle $\boldsymbol{\alpha}$ is given $\& \mathbf{a}^{\prime}$ is also given, we can get the point h on $x y$.
$\rightarrow \quad$ By drawing locus of VT below $x y$, we can get VT on the line (h, a ').
$\rightarrow \quad$ On h \& VT, locate HT \& v. Join (h, VT) \& ($\mathbf{v}, \mathbf{H T})$. On these lines, the Front View (FV) \& Top View (TV) will lie. Join (v, HT) \& extend below xy to cut locus of B.
$\rightarrow \quad$ The point of intersection will give the point $\mathbf{b}_{\mathbf{2}}$ which is the final position of top view. Locate \mathbf{a} on projector of \mathbf{a}^{\prime} and then join $\mathbf{a}-\mathbf{b}_{2}$ to get the top view.
$\rightarrow \quad$ Project top view above to get b_{2} ' on (h, VT). Since FV \& TV are found now, the TL can be found by drawing arcs \& projecting onto opposite quadrants.
Steps:
i) Draw $x-y$ line $\&$ mark a^{\prime} at 10 mm above $x y$. On a'. draw a line at $\alpha=30^{0}$ which is the FV line. Extend the FV line to cut $x y$ at h.

S.RAMANATHAN	ASST PROF MVSREC
Ph: 9989717732	rama_bhp@yahoo.com

(ii) Below $x-y$, draw a line $\|$ to $x-y$ at 30 mm \& the point where it cuts the line through h \& a', mark VT.
(iii) On VT, draw a \perp to meet $x y$ at v. On h, draw a \perp to get HT at 45 mm . Join (v, HT) and extend it.

(iv) Now join (h, VT) \& (v, HT).

(v) To mark b_{2}, draw the locus line \| to $x y \&$ below xy at 100 mm . This line represents the end B from VP.
If we observe the above figure, the FV \& TV will lie on lines joining (h, VT) $\&(v, H T)$.

