E GRAPHICS: $\quad \frac{\text { PROJECTION OF LINES }}{\text { (ANGLE TO BOTH HP\&VP) }}$	S.RAMANATHAN ASST PROF Ph: 9989717732		
10.17) A line AB 90 mm long is inclined at $\mathbf{3 0} 0^{\boldsymbol{0}}$ to the HP. Its end \mathbf{A} is $\mathbf{1 2} \mathbf{~ m m}$ above the $\mathbf{H P}$ and $\mathbf{2 0}$ mm in front of the VP. Its front view measures 65 mm . Draw its projections and find its inclination with the VP. Ans) Given data: $\begin{array}{lll} \mathbf{T L} & = & 90 \\ \boldsymbol{\theta} & = & 30^{0} \\ \mathbf{F V}= & 65 \\ \left(\mathbf{a}^{\prime}, \mathbf{a}\right)= & (12,20) ; \end{array}$ Logic: \quad Since the $T L$ and $F V$ are given, we can get the projections in the FV. To get the projections in TV, we use the simple rule of drawing the $F V$ parallel to $x-y$ line and projecting it below to cut the TL w.r.t VP.	10.15) Incomplete projection of a line inclined at 30° to the HP is given in Fig. Find the true length of the line and its inclination with the VP. Ans) Given data: $\begin{aligned} &\left(\mathbf{p}^{\prime}, \mathbf{p}\right)= \\ & \boldsymbol{\theta}= \\ & \boldsymbol{\beta}=\mathbf{3 0}^{\mathbf{0}} \\ & \mathbf{L T V}=\mathbf{4 5}^{\mathbf{0}} \\ & \mathbf{L 5 .} . \end{aligned}$ Logic: \quad Since the TL and Φ are to be found, the given angle in fig is β and the line on it will be TV. Also the LTV is given as 65 . Hence TV is found from this. Use the simple rule of drawing the TV parallel to $x-y$ line and projecting it above to cut TL w.r.t HP.		
Steps: 1) $\operatorname{Mark}\left(a^{\prime}, a\right)=(12,20)$ from $x-y$. 2) Draw TL a'b' $=90$ at $\boldsymbol{\theta}=30^{\circ}$ and then draw its top view SL ab. 3) Draw LFV on b' and FV a' ${ }_{2}{ }^{\prime}$ with a' as centre and 65 radius. ($\mathrm{FV}=65$). 4) \quad Draw $F V=65\left(a^{\prime} b_{1}{ }^{\prime}\right), \\|$ to $x-y$ at a^{\prime}. Project it below and cut arc of TL=90 from a to get LTV. 5) On LTV, draw vertical line from b2' to get top view b_{2}. $a b_{2}$ is TV. 6) Measure $\Phi, \alpha \& \beta$.	Steps: 1) $\quad \operatorname{Mark}(p, p)=(15,15)$ from $x-y$. 2) Mark LTV at 65 mm from $x-y$ and draw $\boldsymbol{\beta}=\mathbf{4 5}^{\mathbf{0}}$ from a to get TV $\mathbf{a b}_{2}$. 3) From \mathbf{a}^{\prime}, at $\boldsymbol{\theta}=30^{\circ}$, draw TL of unknown length. 4) At a, draw TV \|	to $\mathbf{x}-\mathbf{y}\left(\mathrm{ab}=\mathrm{ab}_{2}\right)$ \& project it above to cut $\boldsymbol{\theta}=30^{0}$ to get TL ab'. 5) Draw LFV at b' \& project b_{2} to get $b_{2}{ }^{\prime} . \mathrm{FV}=\mathrm{ab}_{2}{ }^{\prime}$. 6) At a, draw $T L=a^{\prime} b^{\prime}$ to cut LTV at b 1 and measure $\Phi \& \alpha$.	

E GRAPHICS: $\quad \frac{\text { PROJECTION OF LINES }}{\text { (ANGLE TO BOTH HP\&VP) }}$	$\begin{array}{ll}\text { S.RAMANATHAN } & \begin{array}{l}\text { ASST PROF } \\ \text { Ph: } 9989717732\end{array}\end{array}$	
10.12) A line AB $\mathbf{6 5 ~ m m}$ long has its end A 20 mm above HP and 25 mm in front of VP. The end B is $\mathbf{4 0} \mathrm{mm}$ above $\mathbf{H P}$ and $\mathbf{6 5 ~ m m}$ in front of the VP. Draw its projections and find its inclination with the HP \&VP. Ans) Given data: $\begin{array}{ll} \mathrm{TL}= & 65 \\ \left(\mathbf{a}^{\prime}, \mathbf{a}\right)= & (20,25) ; \\ \mathbf{B}= & (40,65) \end{array}$ $\Longrightarrow \quad L F V=40 ; \quad \text { LTV }=65$ Logic: End B means here distance of LFV and LTV from x-y. Simply mark the LFV and LTV and then from a' and a, cut arcs of $T L=65$ to get the TL above and below.	10.14) A line $A B, 90 \mathrm{~mm}$ long is inclined at 45^{0} to the HP \& its top view makes an angle of $\mathbf{6 0}{ }^{\mathbf{0}}$ to the VP. The end \mathbf{A} is in HP and $\mathbf{1 2}$ mm in front of VP. Draw its projections \& find $\boldsymbol{\Phi}$. Ans) Given data: $\begin{array}{lll} \left(\mathbf{a}^{\prime}, \mathbf{a}\right) & = & (0,12) \\ \boldsymbol{\theta} & = & \mathbf{4 5} \\ \boldsymbol{\beta} & = & \mathbf{6 0}^{0}(\mathrm{TV} \text { angle in } V P \text { is } \beta) \\ \mathrm{TL} & =90 . \end{array}$ Logic: \quad Since the $T L, \theta \& \beta$ are given, the SL w.r.t VP is found and the same is drawn on line of β to get the TV b_{2}. On b_{2}, LTV is drawn and TL cut on the LTV from a. The simple rule is drawing the TV parallel to $x-y$ line at a \& cut arc w.r.t VP to get the LTV.	
Steps: 1) $\quad \operatorname{Mark}\left(a^{\prime}, a\right)=(20,25)$ from $x-y$. 2) Draw parallel lines LFV and LTV at 40 above xy and 65 below xy. 3) With a' as centre and 65 radius cut arc on LFV to get TL a'b'. 4) With a as centre and 65 radius cut arc on LTV to get TL ab_{1}. 5) At a, draw arc with Radius $=$ SL ab to get TV ab2. Draw vertical line from b 2 to get front view $\mathrm{b}_{2}{ }^{\prime} . \mathrm{ab}_{2}{ }^{\prime}$ is FV . 6) Measure $\theta, \Phi, \alpha \& \beta$.	Steps: 1) $\operatorname{Mark}\left(a^{\prime}, a\right)=(0,12)$ from $x-y$. 2) Draw TL $\mathbf{a}^{\prime} \mathbf{b}^{\prime}=\mathbf{9 0}$ at $\boldsymbol{\theta}=30^{\circ}$, LFV at $\mathbf{b}^{\prime} \&$ draw $\mathbf{S L} \mathbf{a b}$ (ab is TV). 3) From a, at $\boldsymbol{\beta}=\mathbf{6 0}^{\mathbf{0}}$, draw line \& cut arc of rad = ab to get TV ab $\mathbf{a b}_{2}$. Project $\mathbf{b}_{\mathbf{2}}$ up on LFV to get $\mathbf{b}_{\mathbf{2}}{ }^{\prime}$ and $\mathbf{F V} \mathbf{a}^{\prime} \mathbf{b}_{\mathbf{2}}{ }^{\prime}$. 4) At \mathbf{b}_{2}, draw LTV \\| to $x-y \&$ cut arc with $\mathbf{r a d}=90$ to get $\mathbf{T L} \mathbf{a b}_{1}$. 6) Measure angles $\Phi \& \alpha \&$ length of $\mathrm{FV} \mathrm{a}^{\prime} \mathrm{b}_{2}$.	

E GRAPHICS: $\quad \frac{\text { PROJECTION OF LINES }}{\text { (ANGLE TO BOTH HP\&VP) }}$	S.RAMANATHAN ASST PROF Ph: 9989717732 rama_bhp@yahoo.com				
10.8) A line AB 50 mm long is inclined at $\mathbf{3 0}{ }^{0}$ to the HP \& $\mathbf{4 5}^{\mathbf{0}}$ to VP. Its end \mathbf{A} is both HP \& VP. Draw its projections and find its inclinations $\alpha \& \beta$. Ans) Given data: $\begin{array}{lll} \mathbf{T L} & = & \mathbf{5 0} \\ \boldsymbol{\theta} & = & \mathbf{3 0}^{0} \\ \mathbf{\Phi} & = & \mathbf{4 5}^{0} \\ \mathbf{(\mathbf { a }}, \mathbf{a}) & = & \mathbf{(0 , 0} \mathbf{0}) \end{array}$ Logic: \quad Since the $T L, \theta \& \Phi$ are given, we can get the LFV \& LTV. Also the SL can be got in each case. To get the projections in TV \& FV, we use the simple rule of drawing the SL parallel to $x-y$ line and drawing ares to cut LFV \& LTV.	10.11) The top view of a 75 mm long line measures $\mathbf{6 5 ~ m m}$ and its front view measures 50 mm . Its one end is in the $\mathbf{H P}$ and $\mathbf{1 2} \mathrm{mm}$ in front of VP. Draw its projections and find its inclination with HP and VP. Ans) Given data: $\begin{array}{ll} \left(\mathbf{a}^{\prime}, \mathbf{a}\right) & = \\ \mathbf{T L} & = \\ \mathbf{0}, 12) \\ \text { FV } & = \\ \text { TV } & =\mathbf{5 0} \\ \text { TV. } \end{array}$ Logic: Since only lengths are given, $\alpha \& \beta$ are found from the simple rule of drawing the TV parallel to $x-y$ line at a and projecting it above to cut TL w.r.t HP\& drawing FV parallel to $x-y$ line at a' and projecting it below to cut TL w.r.t VP.				
Steps: 1) $\operatorname{Mark}\left(a^{\prime}, a\right)=(0,0)$ from x-y. 2) Draw TL a'b'=50 at $\boldsymbol{\theta}=30^{\circ}$ and then draw its top view SL ab. 3) Draw TL ab ${ }_{1}=50$ at $\boldsymbol{\Phi}=45^{0}$ and then draw its front view SL $a^{\prime} b_{1}$ '. 4) Draw LFV on b' \& LTV on b_{1}. 5) For $\mathbf{F V}$, take rad $\underline{\mathbf{a}}^{\prime} \mathbf{b}_{1} \mathbf{}^{\prime}$ with $\underline{\mathbf{a}} \mathbf{'}^{\prime}$ as centre and cut on LFV to get $\mathrm{FV} \mathrm{a}^{\prime} \mathrm{b}_{2}{ }^{\prime}$. 4) For TV, take rad $\underline{\mathbf{a b}}$ with $\underline{\mathbf{a}}$ as centre and cut arc on LTV to get TV ab. 5) Draw vertical line from b2' to b_{2}.	Steps: 1) $\quad \operatorname{Mark}\left(a^{\prime}, a\right)=(0,15)$ from $x-y$. 2) At \mathbf{a}^{\prime}, mark $\mathbf{F V} \mathbf{a}^{\prime} \mathbf{b}_{\mathbf{1}}{ }^{\prime}=\mathbf{5 0} \\|$ to $\mathbf{x}-\mathbf{y}$ \& project it below to cut TL at ab ${ }_{1}$. 3) At a, mark TV ab=65 \\| to $x-y \&$ project it above to cut TL at a'b'. 4) At \mathbf{b}^{\prime}, draw LFV \\| to $\mathbf{x}-\mathbf{y}$ \& at \mathbf{b}, draw LTV \\| to x-y. 5) Draw $\mathbf{F V}$ at \mathbf{a}^{\prime}, with $\mathrm{rad}=50 \&$ TV at a with radius $=65$. 6) Measure $\theta, \Phi, \alpha \& \beta$				

