Overview of Scales

While preparing for scales, the following steps are to be followed:

1) What is the Representative fraction (R.F) of the problem?
(A) The R.F is calculated by the following formula:

Length of the object on drawing sheet (in cm)
 R.F =
 Actual length of the object (in cm)

This may be given in a statement form as shown below:
(i) On a map, 1 cm represents 10 meters of actual length. Find the RF?
(ii) An area of 144 sq cm on a map represents an area of 36 sq km on the field. Find the RF?
(iii) A room of $1728 \mathrm{~m}^{3}$ volume is shown as $216 \mathrm{~cm}^{3}$ volume on a drawing sheet. What is the RF?

For calculating RF, always consider the linear dimension only. If square units are mentioned in dimensions, find the square root and if cubes (volumes) are mentioned, find the cube root of the ratio to get the RF.
E.g.: for (i), RF= $1 \mathrm{~cm} / 10 \mathrm{~m} \quad=10 \mathrm{~mm} / \mathrm{l} 10 \mathrm{mX} 1000$ (in mm) $=1 / 1000$.
For (ii), RF =

	$\sqrt{144 \mathrm{~cm}^{2} /\left(36 \times(1000 \times 100)^{2} \mathrm{~cm}^{2}\right)}$
$=$	$2 / 100000$
$=$	$1 / 50000$

For (iii), RF =
$\sqrt[3]{216 \mathrm{~cm}^{3} / 1728 \times(100)^{3} \mathrm{~cm}^{3}}$
$=\quad 1 / 200$.

ENGG GRAPHICS: $\underline{\text { Scales }}$\begin{tabular}{l|ll}

S.RAMANATHAN \& | ASST PROF MVSREC |
| :--- |
| Mob: 9989717732 | \& rama_bhp@yahoo.com

\end{tabular}

2) Maximum Length (M.L):

This data is usually given in the problem. It will be in terms of maximum length that has to be measured by the given scale. It is taken as M.L
E.g. Construct a scale to measure up to 5 meters \rightarrow M.L $=5 \mathrm{~m}$.

Construct a scale to read up to 10 meters \rightarrow M.L $=10 \mathrm{~m}$.
Construct a scale to read up to 600 meters $\rightarrow \quad$ M.L $\quad=\quad 600 \mathrm{~m}$.
3) Length of Scale (LOS) (always in cm or mm):

LOS is the actual length of the scale that is drawn for the given problem.
LOS is calculated by the following formula:

\[

\]

E.g. (i) For a plain scale, RF $=1 / 4$ and M.L $=5$ decimeters, Find LOS.

$$
\begin{aligned}
\text { LOS } & =1 / 4 \quad \text { X } \quad 5 \mathrm{X} \quad 10 \mathrm{~cm} \text { (Since } 1 \mathrm{dm}=10 \mathrm{~cm} \text {) } \\
& =12.5 \mathrm{~cm} .
\end{aligned}
$$

The length of the line that is drawn on the drawing sheet is $12.5 \mathbf{~ c m}$.
(ii) For a diagonal scale, RF $=3 / 200$ \& M.L $=6$ meters. Calculate the L.O.S

$$
\begin{aligned}
\text { LOS } & =3 / 200 \times \quad 6 \quad X \quad 100 \mathrm{~cm} \text { (Since } 1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =9 \mathrm{~cm} .
\end{aligned}
$$

The length of the line that is drawn on the drawing sheet is $\mathbf{9} \mathbf{~ c m}$.

| ENGG GRAPHICS: Scales | S.RAMANATHAN
 Mob: 9989717732 | ASST PROF MVSREC
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

4) Division of LOS into n equal parts (n is Maximum Length ML)

After drawing a line of length equal to LOS, the next step is to divide the line into a certain no. of equal parts. This is found by checking the Maximum Length.
\rightarrow Case 1: When ML < 10:
E.g. If LOS $=\mathbf{1 2 . 5} \mathbf{~ c m}$ and $M L=\mathbf{~ d m}$, then Divide LOS into 5 equal parts so that each part represents $\mathbf{1 d m}$.

If LOS $=\mathbf{1 5} \mathbf{c m}$ and ML $=\mathbf{8 0 0}$ meters, divide LOS into 8 equal parts so that each part represents 100 meters (by line division method)
\rightarrow Case 2: When ML > 10:
If ML in the given problem is greater than 10, then we have to take the factors of the ML and divide the LOS.

Eg1. If ML $=25 m$, then we can't divide the LOS into 25 parts. Hence take the factors of 25 , i.e. 5×5. Hence divide the LOS into 5 equal parts so that each part represents 5 m .

Thus, If factors of ML are $\mathbf{m x n}$, then divide ML into \underline{m} equal parts of \mathbf{n} units each.

Sometimes, the ML will be given in terms of a non related scale units. Then, we need to convert the ML into the units used in the scale and then divide LOS into ML no.of parts.

Eg 3: Draw a plain scale to show decimeters \& centimeters and to measure upto 1m.
Sol: Here, we know that a plain scale relates only a main unit and its immediate sub unit. Thus, after dm, cm is its sub unit. So, meter is a unit not required in the scale. But ML is given in meters. So it has to be converted into dm since dm is the main scale.

Thus, $\mathrm{ML}=1 \mathrm{~m}=\underline{\mathbf{1 0}} \mathrm{dm}$. Hence, the LOS can be divided into 10 equal parts.
Eg 4: Draw a diagonal scale to show meters and measure upto 1 km .
Sol: $1 \mathrm{~km}=1000 \mathrm{mts}(10 \times 100)$. Hence ML is divided into 10 equal parts of 100 m each.

| ENGG GRAPHICS: Scales | S.RAMANATHAN
 Mob: 9989717732 | ASST PROF MVSREC
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

5) Division of the first part into sub-divisions:

The first part of all the scales is always divided into sub-divisions depending on the main unit and the sub units.

Relation between various units and sub units:

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Plain Scales

Plain scales are used for measurement in two units or a unit and its sub unit. It consists of a line (LOS) divided into suitable no. of equal parts (based on Max Length, ML) \& the first part is sub-divided into equal parts.

The zero is placed at the end of $1^{\text {st }}$ main division. Labeling of 0 in main scale is after the first unit.

Steps involved in Plain Scales:

1) Find RF.
2) Find Maximum Length (ML).
3) Find Length of Scale (LOS) by using the formula. (LOS= RF X ML).
4) Draw the line of length $=$ LOS \& divide it into n equal parts based on ML. Draw a rectangle on LOS of height 5 mm .
5) Divide the first division also into some equal parts based on the unit and its sub-unit given in the problem.
6) Give numbering to main scale as $\mathbf{0 , 1 , 2 , 3}, \ldots$ after the first division to the right side \& $0,1,2,3 \ldots$ to the left of $\mathbf{0}$ in $\mathbf{1}^{\text {st }}$ sub division.
7) Mark the given value of dimension based on problem.

ENGG GRAPHICS: $\quad \underline{\text { Scales }}$	S.RAMANATHAN Mob: 9989717732	ASST PROF MVSREC rama_bhp@yahoo.com

Problems on Plain Scales:

As solved examples are explained well in the text book (ND Bhat), only exercise problems are presented in this notes.

Page 65:-

Q2) Construct a scale of $\mathbf{1 : 5}$ to show decimeters and centimeters and to read up to $\mathbf{1}$ meter. Show the length of $\mathbf{7 . 6} \mathbf{~ d m}$ on it.

Sol) Given data:

RF	1/5
Max Length (ML) =	$10 \mathrm{dm}(1 \mathrm{~m}=10 \mathrm{dm})$;(no. of parts of scale (n) = 10 parts)
Length of scale (LOS) =	RF X ML
=	$1 / 5 \mathrm{X} 10 \mathrm{X} 10 \mathrm{~cm}(1 \mathrm{dm}=10 \mathrm{~cm})$
$=$	20 cm .

The length of the line that is drawn on the drawing sheet is $\mathbf{2 0} \mathbf{~ c m}$

| ENGG GRAPHICS: \quad Scales | S.RAMANATHAN
 Mob: 9989717732 | ASST PROF
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

Page 65:-

 0.6 m .

Sol) Given data:

The length of the line that is drawn on the drawing sheet is $\mathbf{1 5} \mathbf{~ c m}$.

The length to be shown is $0.6 \mathrm{~m}=6 \mathrm{dm}=6 \mathrm{dm}+0 \mathrm{~cm}$

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF MVSREC rama_bhp@yahoo.com

Page 65:-

Q5) Draw a scale of $\mathbf{1 : 5 0}$ showing meters \& decimeters \& to measure up to 8 meters. Show the length of 5.4 m on it.

Sol) Given data:

| RF | $=$ | $1 / 50$ |
| :--- | :--- | :--- | :--- |
| Max Length (ML) | $=$ | $8 \mathrm{~m} ; \quad($ no. of parts of scale $(\mathrm{n})=8$ parts) |
| Length of scale (LOS) | $=$ | RF X ML |
| | $=\quad(1 / 50) \times 8 \times 100 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm})$ | |
| | $=16 \mathrm{~cm}$. | |

The length of the line that is drawn on the drawing sheet is $\mathbf{1 6} \mathbf{~ c m}$

$\left.\begin{array}{|l|l|l|}\hline \text { ENGG GRAPHICS: } & \text { Scales } & \begin{array}{l}\text { S.RAMANATHAN } \\ \text { Mob: 9989717732 }\end{array}\end{array} \begin{array}{l}\text { ASST PROF MVSREC } \\ \text { rama_bhp@yahoo.com }\end{array}\right]$

Page 66:-

6) A 3.2 cm long line represents a length of 4 meters. Extend this line to measure lengths up to 25 meters and show on it units of meter and 5 meters. Show the length of $\mathbf{1 7}$ meters on this line.

Sol) Given data:

$$
\begin{aligned}
\text { RF } & =3.2 \mathrm{~cm} / 4 \mathrm{~m} \\
& =3.2 /(4 \times 100)(1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =1 / 125 .
\end{aligned}
$$

Max Length (ML) $=25 \mathrm{~m}$; (no. of parts of scale (n) $=5$ parts, each is 5 m)
Length of scale (LOS) = RFX ML (in cm)

$$
\begin{aligned}
& =\quad(1 / 125) \times 25 \times 100 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =\quad \mathbf{2 0} \mathbf{~ c m} .
\end{aligned}
$$

The length of the line that is drawn on the drawing sheet is $\mathbf{2 0} \mathbf{~ c m}$.
The sub scale is to be divided into 5 parts.

The length to be shown is $17 \mathrm{~m}=15 \mathrm{~m}$ (on main scale) +2 m (on sub scale)

| ENGG GRAPHICS: \quad Scales | S.RAMANATHAN
 Mob: 9989717732 | ASST PROF MVSREC
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

Page 67:-

27) A room of $\mathbf{1 7 2 8} \mathbf{m}^{3}$ volume is shown by a cube of $216 \mathbf{c m}^{3}$ volume. Find the RF \& Construct a plain scale to measure up to 42 m . Mark a distance of 22 m on this scale

Sol) Given data:

RF

$$
\begin{aligned}
& =\sqrt[3]{(216) \mathrm{cm}^{3} /\left(1728 \times(100)^{3}\right) \mathrm{cm}^{3}} \\
& =1 / 200 .
\end{aligned}
$$

Max Length (ML) = 42 m (6×7 or 7×6);
LOS is divided into 6 parts of 7 m each or 7 parts of 6 m each

Length of scale (LOS) = RF X ML (in cm)

$$
\begin{aligned}
& =\quad(1 / 200) \times 42 \times 100 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =\quad 21 \mathrm{~cm} .
\end{aligned}
$$

The length of the line that is drawn on the drawing sheet is $\mathbf{2 1} \mathbf{~ c m}$.
The sub scale is to be divided into 6 or 7 parts.

The length to be shown is $22 \mathrm{~m}=18 \mathrm{~m}$ (on main scale) $+\mathbf{4 m}$ (on sub scale)

| ENGG GRAPHICS: $\underline{\text { Scales }}$ | S.RAMANATHAN
 Mob: 9989717732 | ASST PROF MVSREC
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

Diagonal Scales

Diagonal scales are used for measurement in three units or a unit and its 2 sub units. It consists of a line (LOS) divided into suitable no. of equal parts (based on Max Length, ML) \& the first part is sub-divided into equal parts just as in plain scales. The only extra construction is that on the vertical lines of the scale, the third unit or third subdivision is considered

The zero is placed at the end of $1^{\text {st }}$ main division. Labeling of 0 in main scale is after the first unit. For the vertical divisions, numbering is from bottom to top as $0,1,2,3 \ldots$

Steps involved in Diagonal Scales:

1) Find RF, ML \&LOS by using the formula. (LOS= RF $\mathbf{x} \mathbf{M L}$).
2) Draw the line of length = LOS \& divide it into n equal parts based on ML. Draw a rectangle on LOS of height 5 cm .
3) Divide the first division also into some equal parts based on the unit and its sub-unit given in the problem \& number them as $1,2,3 \ldots$
4) Divide the vertical height also into equal parts depending on the relation between the 2 sub units (Usually 10 parts) \& number as $\mathbf{0 , 1 , 2 , 3}, \ldots$ from bottom to top.
5) Join point $\mathbf{9}$ of first sub division to the point $\mathbf{1 0}$ of the vertical division. The line is inclined and to this draw parallel lines from points 8, 7 , $6 . .$. up to 0 on the first part sub division.
6) Mark the given value of dimension based on problem.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { ENGG GRAPHICS: } & \text { Scales } & \begin{array}{l}\text { S.RAMANATHAN } \\
\text { Mob: } 9989717732\end{array}\end{array}
$$ \begin{array}{l}ASST PROF MVSREC

rama_bhp@yahoo.com\end{array}\right]\)| rem |
| :--- |

Page 65:-

Q4) Draw a diagonal scale of $\mathrm{RF}=3 / 100$, showing meters, decimeters \& centimeters \& to measure up to 5 meters. Show the length of 3.69 meters on it.

Sol) Given data:

RF	$=$	$3 / 100$
Max Length (ML)	$=$	$5 \mathrm{~m} ; \quad(\mathrm{no}$. of parts of scale (n) $=5$ parts)
Length of scale (LOS)	$=$	RF X ML
	$=\quad(3 / 100) \times 5 \times 100 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm})$	
	$=15 \mathrm{~cm}$.	

The length of the line that is drawn on the drawing sheet is $\mathbf{1 5} \mathbf{~ c m}$

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Page 66:-

Q7) Construct a diagonal scale of $\underline{\mathrm{RF}=1 / 6250}$ to read up to 1 kilometer and to read meters on it. Show a length of 653 meters on it.

Sol) Given data:

The length of the line that is drawn on the drawing sheet is $\mathbf{1 6} \mathbf{~ c m}$

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Vernier Scales

$\rightarrow \quad$ Vernier scales are used for measurement in three units or a unit and its 2 sub units.
\rightarrow (i) It consists of a line (length=LOS) divided into suitable no. of equal parts (Based on Max Length, ML).
\rightarrow (ii) (a) The first part is sub-divided into equal parts just as in plain scales.
(b) Also, the main scale has to be divided into minor equal parts (usually of 10 parts) to measure the lengths in first decimal or 10 's place.
\rightarrow (iii) The only extra construction is that above the first sub-division, a separate Vernier scale is drawn which is used for measuring the sub-sub-units.

Construction of a vernier scale:

Consider the usual plain scale problem.
We shall learn how to construct a vernier scale on it.
Steps:

1) Find the RF, ML \& LOS. Draw the scale \&mark the divisions of plain scale and sub scale (all these steps are same as in plain scales).
2) On every main scale, divide into equal sub divisions between 0-1, 1-2, 2-3 \& give the numbering accordingly.

Observe that all main divisions are again sub-divided into 10 equal parts so that measurements like $0.5,1.8,2.7$, etc can be made on main scale itself. This is not done in plain scales or diagonal scales but only in vernier scales.

ENGG GRAPHICS:	$\underline{\text { Scales }}$	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Vernier Scales...Steps..Continued...

3) Now after the main scale and sub scale divisions have been completed, we have to draw the vernier scale on the top of the first sub-division between $10 \& 0$.

Procedure for vernier scale above the first sub-division:
4) Let the length of each division of $\underline{\mathbf{A O}}$ be $\underline{\boldsymbol{x}}$. Above the first sub-division AO, extend the line by $\underline{\boldsymbol{x}} \&$ draw a box $\underline{\boldsymbol{B O}}$ of 5 mm height $\&$ of length $=\underline{\boldsymbol{A O}+\boldsymbol{x}}$.

5) Now BO should be divided into 10 equal parts to get the vernier scale.

Each division on this vernier scale $=(\mathbf{B O}) / \mathbf{1 0}=(\mathbf{A O}+\mathbf{x}) / \mathbf{1 0}=(\mathbf{1 0 + 1}) / \mathbf{1 0}=\mathbf{1 . 1}$ sub units or 11 sub-sub-units. (E.g.: if meters, decimeters \& centimeters are the units considered in the problem, then each Vernier scale reading will be multiples of 11 cm or 1.1 dm

| ENGG GRAPHICS: | Scales | S.RAMANATHAN
 Mob: 9989717732 |
| :--- | :--- | :--- | | ASST PROFMVSREC
 rama_bhp@yahoo.com |
| :--- |

Measurements in Vernier Scales

$\rightarrow \quad$ In Vernier scales, it is not possible to measure the sub-division directly. Only 2 types of readings can be taken. They are the main scale reading and the vernier scale reading.
\rightarrow As the vernier scale reading consists of multiples of 11 , subtract the multiple of 11 from the main scale reading which has the same last digit.

For E.g. $\quad 2.64$ decimeters is to be measured.
Since 4 is the last digit, subtract 0.44 from it. Hence $\underline{\mathbf{2 . 6 4}=\mathbf{0 . 4 4 + 2 . 2 0}}$.
E.g.(1)

E.g. (3)

E.g. (4)

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Exercise Problems

Page 67:-

21) Construct a scale of $\mathbf{R} . \mathbf{F}=\mathbf{1} /(\mathbf{2} .5)$ to show decimeters \& centimeters and by a vernier to read millimeters, to measure up to 4 decimeters. Show on it lengths 2.34 dm, $1.42 \mathrm{dm} \& 0.38 \mathrm{dm}$.

Sol) Given data:

The length of the line that is drawn on the drawing sheet is 16 cm \& divided into 4 parts.
The sub scale is to be divided into $\mathbf{1 0}$ parts \& vernier scale also into $\mathbf{1 0}$ parts.

The lengths are $2.34(0.44,1.90), 1.42(0.22,1.20) \& 0.38(0.88,-0.50)$ (VSD, MSD) (VSD, MSD) (VSD, MSD)

ENGG GRAPHICS:	Scales	S.RAMANATHAN Mob: 9989717732	ASST PROF rama_bhp@yahoo.com

Exercise Problems

Page 67:-

29) The actual length of 500 m is represented by a line of 15 cm on a drawing. Construct a vernier scale to read up to $\underline{400 \mathrm{~m}}$. Mark on the scale a length of $\underline{349 \mathrm{~m}}$.

Sol) Given data:

RF	$15 \mathrm{~cm} /(500 \times 100) \mathrm{cm}=3 / 10000$.
Max Length (ML) =	400 m ; (no. of parts of scale (n) =4 parts, each is 100 m)
Length of scale (LOS) $\begin{aligned} &= \\ &= \\ &=\end{aligned}$	RF X ML (in cm) (3/10000) x $400 \times 100 \mathrm{~cm}(1 \mathrm{~m}=100 \mathrm{~cm})$ 12 cm .

The length of the line that is drawn on the drawing sheet is 12 cm \& divided into 4 parts.
The sub scale is to be divided into $\mathbf{1 0}$ parts \& vernier scale also into $\mathbf{1 0}$ parts.

The length is 349 m (99+ 250); 99 on vernier scale \& 250 on main scale. (VSD, MSD)

