ENGG GRAPHICS: CONIC SECTIONS	S.RAMANATHAN ASST PROF Ph: 9989717732. MVSREC rama_bhp@yahoo.com
Q) \quad A point P is 40 mm and 50 mm away from two straight lines OA and OB which are at 75° to each other. Draw a rectangular hyperbola through P, showing at least 8 points. Ans) Logic: Since OA and OB are at 75° with each other, they can be treated as coordinate axes at angle of 75^{0} \& hence $P(40,50)$ can be marked. Then select 4 points above and 4 points below P and through these points, we can get points of hyperbola.	3) Join $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$, etc, to cut DP at $1^{\prime}, 2^{\prime}, 3^{\prime} \ldots$ up to $8^{\prime} ;$
1) Draw OA, OB $\angle 75^{0}$ to each other, of any	
Mark P at $(40,50)$ from OA, OB.	4) From 1 draw line $1 l^{\text {el }}$ to OA and from 1' draw line 11^{el} to OB to get P 1 . Similarly get the other points of the hyperbola.
2) Divide CP into 5 equal parts up to P and mark 1,2,3,4.After P also mark points $5,6,7$ etc at 10 mm each on CP..	
	On smoothly joining the points, we get the required rectangular hyperbola.

