ENGG GRAPHICS: CONIC SECTIONS	S.RAMANATHAN ASST PROF Ph: 9989717732 rama_bhp@yahoo.com
Q) The major axis of ellipse is $\mathbf{1 2 0} \mathbf{~ m m}$ and the foci are $\mathbf{9 0} \mathrm{mm}$ apart. Find the minor axis and draw the ellipse by concentric circles method. Also draw tangent and normal to the ellipse at a point 20 mm above the major axis. Ans) The minor axis of ellipse can be found by using the relation $\mathrm{OA}=\mathrm{CF}_{1}=\mathrm{CF}_{2}$. $\text { Foci }\left(\mathbf{F}_{1} \mathbf{F}_{2}\right)=90 ; \quad \text { Major axis }(\mathbf{A B})=120$ 1) Draw $A B=120, F_{1} F_{2}=90$ with mid point as O.	4) Divide the circles into 12 equal parts with angle of 30°. Label the points $1,2,3 \ldots$ and $1^{\prime}, 2^{\prime}, 3^{\prime} \ldots$ on outer and inner circles.
	5) On 1 draw vertical line and on 1^{\prime} draw horizontal line to meet at P1.
2) Using $\mathrm{OA}=\mathrm{CF}_{1}$, centre as F and radius $=\mathrm{OA}$, cut arcs on \perp to AB to get minor axis $\mathrm{C} \& \mathrm{D}$. D	Similarly get the other points with 2-2', 3-3', etc and join them to get the required ellipse.
3) Draw 2 circles with O as centre and radius $=\mathrm{OA}$ and OC (semi major axis and semi minor axis).	6) For normal, join $\mathrm{MF}_{1} \& \mathrm{MF}_{2} \&$ find angle between them. Half of the angle is the normal $\mathrm{NN}^{\prime} \& \perp$ to NN^{\prime} is Tangent TT'. Normal is the angular bisector.

