7) Two fixed points are 100 mm apart. Draw the locus of a point P moving in such a way that sum of its distances from the fixed points is always constant and is equal to 125 mm .

Ans) Since the sum of distances from two fixed points is always constant, the fixed points are the foci and the curve is an ellipse. The equn of locus is $\boldsymbol{P F _ { 1 }}+\boldsymbol{P F} \boldsymbol{F}_{2}=$ Const $=2 \boldsymbol{a}$. Hence the construction of the ellipse is by arc of circles method

Foci $\left(\mathbf{F}_{1} \mathbf{F}_{2}\right)=100 ; \quad$ Major axis $(\mathbf{A B})=125$.

1) Draw $\mathrm{AB}=125, \mathrm{~F}_{1} \mathrm{~F}_{2}=100$ with mid point as O .

2) Using $\mathrm{OA}=\mathrm{CF}$, centre as F and radius $=$ OA , cut arcs on \perp to AB to get $\mathrm{C} \& \mathrm{D}$.

3) From F_{1}, mark points at 10 mm up to O ; label them as $1,2,3,4$,etc.

4) With Centre $\left(\mathbf{F}_{1}, \mathbf{F}_{2}\right) \&$ Radius $=\mathbf{A 1}$, draw 4 arcs.

5) With Centre $\left(\mathbf{F}_{1}, \mathbf{F}_{2}\right) \boldsymbol{\&}$ Radius $=\mathbf{B} 1$, cut the 4 arcs to get points P_{1}, Q_{1}, etc.

6) With Radius $=(\mathrm{A} 2, \mathrm{~B} 2),(\mathrm{A} 3, \mathrm{~B} 3)$, etc get the remaining points of ellipse and join them.

