Q) Show by means of drawing that the hypo cycloid is a straight line when the diameter of the Rolling circle (Generating circle) is half of the diameter of the Directing circle (Base circle). Take the diameter of the rolling circle as 50 mm .

Ans) The Curve is a hypo cycloid as the circle rolls on inside of another circle.
The angle for one revolution will be equal to ( $360 * \mathbf{d} / \mathbf{D}$ ).
Logic: Since a hypocycloid is to be drawn, we need to find the angle $\theta$ for one revolution.
Since $\mathbf{D}=\mathbf{2 d}$ we have $\mathbf{d} / \mathbf{D}=\mathbf{1} / \mathbf{2}$ and hence the angle $\theta$ is $360^{*} \mathrm{~d} / \mathrm{D}=360^{*}(1 / 2)=180^{\circ}$
Hence we have to draw a hypocycloid with the angle of $180^{\circ}$ by the general procedure.

1) Draw a circle of 25 mm radius with centre $C$ and mark $P$ as the top most point. Divide the circle into 12 parts and label them as $1,2,3 \ldots 12$ after P .

2) From $P$, mark $O$, centre of big circle (base circle) at $P O=R=50 \mathrm{~mm}$. Here, O will be on point 6 of the circle. Hence $O$ will be the bottommost point while $P$ is the top most point of the circle.
3) Mark $\angle \mathrm{POA}=\theta=180^{\circ}$ and draw straight line OA at $180^{\circ}$ to OP .

$\mathbf{d}=\mathbf{D} / \mathbf{2} ; \mathrm{d}=50 \longrightarrow \mathrm{D}=100 ;$
R. C (d)
B.C (D)


The above figure is the profile of the Hypo Cycloid (a straight line) that is generated when the rolling circle of diameter $d$ rolls on a base circle of Diameter $D(D=d / 2)$ and inside it.
4) With O as centre and OP radius, draw base circle up to A. PA is part of the base Circle.
5) With O as centre and OC radius, draw an arc through centre to get Centre Arc CB. On CB , the centers $\mathrm{C}_{1} \ldots \mathrm{C}_{12}$ will lie.
6) To get the centers, divide LPOA into 12 equal parts (here $180^{\circ} / 12=15^{\circ}$ ) and join O to each of these $15^{0}$ lines on $\mathbf{C B}$ to get $\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 12$.

7) Now, similar to cycloids, with $\mathbf{C 1}$ centre and radius $\mathbf{C P}(=\mathbf{2 5})$, cut arc on $\mathbf{1 - 1 1} \operatorname{arc}$ of rolling circle to get P 1 . Repeat with $\mathrm{C} 2, \mathrm{C} 3$, etc on 2-10, 3-9, etc to get the hypocycloid.

Note: While dividing the $\theta$ into 12 parts, mark centers $\mathrm{C} 1, \mathrm{C} 2, . . \mathrm{C} 12$ on centre arc $\mathbf{C B}$ passing through $\mathbf{C}$ only and not on the arc passing through 3-9.
Arc passing through 3-9 will be separate and is used for getting P3 and P9 while cutting arcs.

