Q) A circle of 50 mm rolls on another circle of 150 mm and inside it. Name the curve. Trace the path of a point P on the circumference of the smaller circle. Also draw a tangent and normal to the curve at a point on the curve, 65 mm from the centre of the bigger circle.

Ans) The Curve is a hypo cycloid as the circle rolls on inside of another circle.
The angle for one revolution will be equal to ($360 * \mathbf{d} / \mathbf{D}$).

1) Draw a circle of 25 mm radius with centre C and mark P as the top most point. Divide the circle into 12 parts and label them as $1,2,3 \ldots 12$ after P .

2) From P, mark O, centre of big circle (base circle) at $P O=R=75 \mathrm{~mm}$.
3) Mark $L \mathrm{POA}=\theta=360 *(\mathrm{~d} / \mathrm{D})$ and draw OA at θ from OP .

The above figure is the profile of the Hypo Cycloid that is generated when the rolling circle of d rolls on a base circle of D and inside it.

4) With O as centre and OP radius, draw base circle up to A . PA is part of the base Circle.
5) With O as centre and OC radius, draw an arc through centre to get Centre Arc CB. On CB , the centers $\mathrm{C}_{1} \ldots \mathrm{C}_{12}$ will lie.
6) To get the centers, divide $\left\llcorner\right.$ POA into 12 equal parts (here $120 / 12=10^{\circ}$) and join O to each of these 10^{0} on $\mathbf{C B}$ to get $\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 12$.

7) Now, similar to cycloids, with $\mathbf{C 1}$ centre and radius $\mathbf{C P}(=\mathbf{2 5})$, cut arc on $\mathbf{1 - 1 1} \operatorname{arc}$ of rolling circle to get P 1 . Repeat with $\mathrm{C} 2, \mathrm{C} 3$, etc on 2-10, 3-9, etc to get the hypocycloid.

Note: While dividing the θ into 12 parts, mark centers $\mathrm{C} 1, \mathrm{C} 2, . . \mathrm{C} 12$ on centre arc $\mathbf{C B}$ passing through \mathbf{C} only and not on the arc passing through 3-9.
Arc passing through 3-9 will be separate and is used for getting P3 and P9 while cutting arcs.

Tangent and Normal:

1) Mark M on the hypocycloid at 65 mm from O by taking O as centre and radius 65.
2) With M as center, radius $\mathrm{CP}(=25)$, cut arc Q on CB .
3) Join QO, extend it to cut base circle PA at N.
4) Join NM to get normal NN', and \perp to NN^{\prime} draw the tangent TT^{\prime}.
