Q) A circle of 50 mm rolls on another circle of 150 mm and outside it. Name the curve. Trace the path of a point P on the circumference of the smaller circle. Also draw a tangent and normal to the curve at a point on the curve, 85 mm from the centre of the bigger circle.

Ans) The Curve is an epicyloid as the circle rolls on outside of another circle.
The angle for one revolution will be equal to (360 * d/D).

1) Draw a circle of 25 mm radius with centre C and mark P as the bottom most point. Divide the circle into 12 parts and label them as $1,2,3 \ldots 12$ after P .

2) From P, mark O, centre of big circle (base circle) at $\mathrm{PO}=\mathrm{R}=\mathbf{7 5} \mathrm{mm}$.
3) Mark $\left\llcorner\mathrm{POA}=\theta=360^{*}(\mathrm{~d} / \mathrm{D})\right.$ and draw OA at θ from OP.

R.C \rightarrow ROLLING CIRCLE (GENERATING CIRCLE)
B.C \rightarrow BASE CIRCLE (DIRECTING CIRCLE)

The above figure is the profile of the Epi Cycloid that is generated when the rolling circle of d rolls on a base circle of D.
4) With O as centre and OP radius, draw base circle up to A . PA is part of the base Circle.
5) With O as centre and OC radius, draw an arc through centre to get Centre Arc CB. On CB , the centers $\mathrm{C}_{1} \ldots \mathrm{C}_{12}$ will lie.
6) To get the centers, divide $\left\llcorner\right.$ POA into 12 equal parts (here $120 / 12=10^{\circ}$) and join O to each of these 10° to get $\mathrm{C} 1, \mathrm{C} 2, \ldots \mathrm{C} 12$.

7) Now, similar to cycloids, with $\mathbf{C 1}$ centre and radius $\mathbf{C P}(=\mathbf{2 5})$, cut arc on $\mathbf{1 - 1 1} \operatorname{arc}$ of rolling circle to get P 1 . Repeat with $\mathrm{C} 2, \mathrm{C} 3$, etc on $2-10,3-9$, etc to get the epicycloid.

Note: While dividing the θ into 12 parts, mark centers $\mathrm{C} 1, \mathrm{C} 2, . . \mathrm{C} 12$ on centre arc $\mathbf{C B}$ passing through \mathbf{C} only and not on the are passing through 3-9.
Arc passing through 3-9 will be separate and is used for getting P3 and P9 while cutting arcs.

Tangent and Normal:

1) Mark M on the epicycloid at 85 mm from O by taking O as centre and radius 85 .
2) With M as center, radius $\mathrm{CP}(=25)$, cut arc Q on CB .
3) Join QO, cutting base circle PA at N.
4) Join NM to get normal NN^{\prime}, and \perp to NN^{\prime} draw the tangent TT^{\prime}.
