Q) A circle of 50 mm rolls on a horizontal straight line for half revolution. For another half revolution it rolls on a vertical line. Trace the path of a point P on the circumference of the circle. Take the generating point as top most point of circle.

Ans) The Curve is a cycloid as the circle rolls along a straight line without slipping. The length for one revolution will be equal to $\prod^{*} \mathbf{D}$ (i.e. 3.14* Diameter of circle).
$L=P A=3.14 * 50=157 \mathrm{~mm}$.
Since there are 2 half revolutions, the length for each $1 / 2$ revolution will be $=\left(\prod^{*} \mathrm{D}\right) / 2$.

1) Draw a circle of 25 mm radius with centre C and mark P as the top most point. Divide the circle into 12 parts and label them as $1,2,3 \ldots 12$ after P .

2) At 6 , draw a tangent 6 A (straight line) length for half revolution will be equal to ($\left.\Pi^{*} \mathrm{D}\right) / 2$ (i.e. $\mathrm{PA}=157 / 2=78.5 \mathrm{~mm}$). Divide 6A into 6 equal parts and mark $1^{\prime}, 2^{\prime}, . .6^{\prime}$.

On $1^{\prime}, 2^{\prime}, . .6^{\prime}$ draw lines \perp to 6 A to cut center line CB at $\mathrm{C}_{1}, \mathrm{C}_{2 .,}, \mathrm{C}_{6}$.

6
3) With C_{1} as centre and $\mathrm{CP}(=25)$ as radius, cut arc on 1-11 line of circle to the right side to get first point P_{1}. Similarly, repeat with $C P$ radius and $C_{2}, C_{3}, . . \mathrm{C}_{6}$ to get half cycloid. The steps are similar like earlier cycloids, but P is at top and next points after P are labeled as 1,2,3...12.
The above figure is the completed cycloid for first $1 / 2$ revolution.

| ENGG DRAWING: CYCLOIDS | S.RAMANATHAN
 Ph: 9989717732 | ASST PROF
 rama_bhp@yahoo.com |
| :--- | :--- | :--- | :--- |

Since there are $\mathbf{2}$ half revolutions, the length for each $1 / 2$ revolution will be $=\left(\prod^{*} \mathrm{D}\right) / 2$.
4) For the $2^{\text {nd }}$ half revolution, the length of line will be $=\left(\prod^{*} \mathrm{D}\right) / 2=78.5 \mathrm{~mm}$.

Draw the same circle at C_{6} with radius $=\mathrm{CP}(25)$, with C_{6} as centre.
The line should be tangential to circle when it rolls and hence draw line of 78.5 from Q .
Mark 7, 8, $9 . .12$ from A on $2^{\text {nd }}$ circle.

Vertical Line Tangentially at Q of 78.5 , divide into 6 parts, to get $7^{\prime}, 8^{\prime}, . .12^{\prime} . .$. Draw $\perp^{\text {to }}$ centre line to get $\mathrm{C}_{7}, \mathrm{C}_{8}, . . \mathrm{C}_{12}$.
5) For $2^{\text {nd }}$ half cycloid, start with \mathbf{C}_{7} as centre, $C P$ radius, cut arc on $\mathbf{7 - 1 1}$ line of $2^{\text {nd }}$ circle. Similarly for C8, C9, etc, get the other points of cycloid.
Note: For $\mathbf{7 , 8 , 9}$ arcs to be cut on left side of centers and for $\mathbf{1 0}, 11$ and 12 arcs to be cut on the right side of centers. Last arc will cut 6-12 line on extended lines beyond $\mathbf{C}_{\mathbf{1 2}}$

