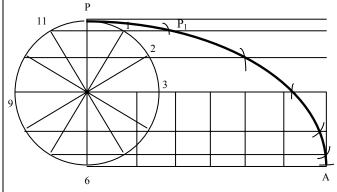

Q) A circle of 50 mm rolls on a horizontal straight line for half revolution. For another half revolution it rolls on a line inclined at 60^0 to the horizontal. Trace the path of a point P on the circumference of the circle. Take the generating point as top most point of circle.

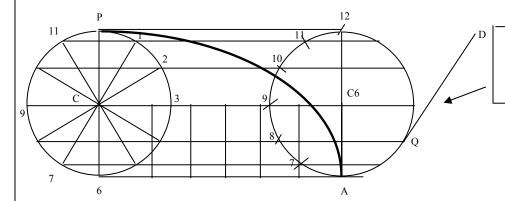
Ans) The Curve is a cycloid as the circle rolls along a straight line without slipping. The length for one revolution will be equal to $\prod *D$ (i.e. 3.14* Diameter of circle).


$$L = PA = 3.14 * 50 = 157 mm$$
. Since there are 2 half revolutions, the length for each ½ revolution will be = $([]*D)/2$.

1) Draw a circle of 25 mm radius with centre C and mark P as the top most point. Divide the circle into 12 parts and label them as 1, 2, 3...12 after P.

CYCLOIDS

At 6, draw a tangent 6A (straight line) length for **half** revolution will be equal to $(\prod^*D)/2$ (i.e. PA=157/2=78.5 mm). Divide 6A into 6 equal parts and mark 1', 2'.., 6'. On 1', 2'.., 6' draw lines \perp to 6A to cut center line CB at C_1 , C_2 ..., C_6 .

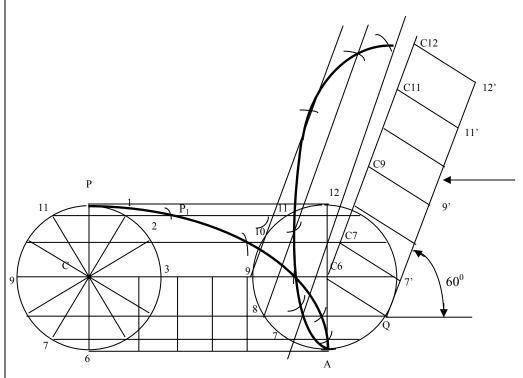

With C₁ as centre and CP (=25) as radius, cut arc on 1-11 line of circle to the right side to get first point P₁. Similarly, repeat with CP radius and C₂, C₃,..C₆ to get **half cycloid**. The steps are similar like earlier cycloids, but P is at top and next points after P are labeled as 1,2,3...12.

The above figure is the completed cycloid for first ½ revolution.

Since there are 2 half revolutions, the length for each $\frac{1}{2}$ revolution will be = $(\prod *D)/2$.

For the 2^{nd} half revolution, the length of line will be = $(\prod *D)/2 = 78.5$ mm. 4) Draw the same circle at C_6 with radius = CP (25), with C_6 as centre.

The line should be tangential to circle when it rolls and hence draw inclined line of 78.5mm from Q at 60° with horizontal. Mark 7, 8, 9..12 from A on 2nd circle. On 7,8,9..12, draw lines \parallel to QD(inclined base line of 60°)



CYCLOIDS

Inclined Line, 60° Tangentially at Q of 78.5, divide into 6 parts, to get 7', 8',..12'...Draw \(\frac{1}{2}\) to centre line to get C₇, C₈,..C₁₂.

For 2nd half cycloid, start with C₇ as **centre**, CP radius, cut arc on 7-11 line of 2nd circle. 5) Similarly for C8, C9, etc., get the other points of cycloid.

Note: For 7,8,9 arcs to be cut on left side of centers and for 10, 11 and 12 arcs to be cut on the right side of centers. Last arc will cut 6-12 line on extended lines beyond C₁₂

Inclined Line, 60° Tangentially at Q of 78.5, divide into 6 parts, to get 7', 8',..12'...Draw [⊥] to centre line to get C_7 , $C_8,...C_{12}$.