ENGG GRAPHICS: CYCLOIDS	S.RAMANATHAN Ph: 9989717732	ASST PROF MVSREC rama_bhp@yahoo.com

Q) A circle of 50 mm diameter rolls on a horizontal straight line without slipping. Trace the path of a point P on the circumference of the circle for one revolution of the circle. Name the curve. Also draw a tangent and normal to the curve at a point on it 30 mm above the base line. Take the generating point as bottommost point of circle.

Ans) The Curve is a cycloid as the circle rolls along a straight line without slipping. The length for one revolution will be equal to $\prod^{*} \mathbf{D}$ (i.e. 3.14* Diameter of circle).
$L=P A=3.14 * 50=157 \mathrm{~mm}$.

1) Draw a circle of 25 mm radius with centre C and mark P as the bottommost point. Divide the circle into 12 parts and label them as 1,2 , 3... 12 after P .

2) At P, draw a tangent $P A$ (straight line) length for one revolution will be equal to $\prod^{*} \mathrm{D}$ (i.e. $\mathrm{PA}=157$).

3) With \mathbf{C}_{1} as centre, $\mathbf{C P}(=25)$ as radius, cut arc on line 1-11 of circle. Similarly with $\mathrm{C} 2, \mathrm{C} 3$, etc as centers and $\mathrm{rad}=\mathrm{CP}$, cut arcs on 2-10,3-9, to get the cycloid.

