
1

INTRODUCTION TO COMPUTER

HISTORY OF COMPUTER:

In earlier days merchants in Egypt and china used a device called as ABACUS. It was used

to do all kinds of mathematical operations like addition, subtraction, multiplication, division

etc.,, abacus was in use for around 4000 years. This was the beginning for usage of

computers.

CHARLES BABBAGE (1792 – 1871):

 He is known as FATHER OF COMPUTERS

 He is a mathematics professor who created the design for computer.

 In 1822 he created differential engine to do mathematical calculations.

 In 1833 he invented analytical engine which had 5 functional units :

 Input unit

 Output unit

 Arithmetic unit

 Control unit

 Memory unit

 The ideas formulated by babbage in designing the analytical engine helped the

scientists to lay foundation for the human’s greatest achievement COMPUTER.

A typical structure

of abacus computer

2

GENERATIONS OF COMPUTER

First generation computers : (1945 – 1956) (sample figures of first generation

computers)

Machine language or binary language was the only language that was understood by

computers. Binary language will be in the form of 0 and 1.

3

Major developments of this generation were:

 ENIAC (Electronic Numerical Integrator And Calculator)

 EDVAC (Electronic Discrete Variable And Automatic computer)

 UNIVAC (Universal Automatic Computer)

 VACCUM TUBES were used to manufacture he computers. The heat generated by

vaccum tubes damaged the sensitive parts of computer. This was the main problem

with vaccum tubes.

 Also machine language was very difficult to understood.

Second generation computers: (1956 – 1963)

 (sample figure of second generation computer)

 Second generation computer machines were based on transistor technology.

 Second generation computers were smaller as compared to the first

generation computers

 The computational time of Second generation computers was reduced to

microseconds from milliseconds.

 Assembly language was used to program Second generation computers.

Hence, programming became more time-efficient and less cumbersome.

 Major inventions of this generation were :

 COBOL (Common Business Oriented Language)

 FORTRAN (FORmula TRANslator)

 ASCII CODE (American Standard Code for Information Interchange)

http://www.freezonal.com/computer.html
http://www.freezonal.com/second-generation-computers.html
http://www.freezonal.com/first-generation-computers.html
http://www.freezonal.com/first-generation-computers.html

4

Third generation computers: (1964 – 1971)

 Integrated chip (IC) was used in place of transistors for manufacturing

computers.

 --------> INTEGRATED CHIP (IC)

 3rd generation computers were more smaller and cheaper than 2nd generation

computers.

 PDP-8, PDP-11 IBM370 are some of the 3rd generation computers

 (if possible try to search for diagrams from internet)

Fourth generation computers : (1971 – present)

Major developments of this generation are :

 Personal computer (PC)

 Graphical User Interface (GUI)

 Computers were designed with MICRO PROCESSOR technology.

Fifth generation computers : (future)

 Aim of computer experts is to develop ARTIFICIAL INTELLIGENCE (AI)

have all qualities of humans.

5

BASIC TERMS

Data: it is a collection of raw facts.

Information: it is a processed data(meaningful data). It is the result of processing the

data.

Input: the data and information entering (given by user) into a computer.

Output: the resultant information obtained by a computer.

Instruction: is to process the given data.

Program: is a sequence of instructions that can be executed by the computer to solve

the given problem.

 COMPUTER

A computer is a electronic device which accepts data as input, process it according

to instructions given, and displays the output.

Characteristics of a computer :

 Huge data storage (large amount of data can be stored)

 High- speed calculations (calculation are done quickly)

 Accuracy (correct result is produced)

 Reliability (gives consistent results even though it is based on electronic circuits)

 Diligence (won’t get tired even it works continuously for many hours)

6

BLOCK DIAGRAM OF COMPUTER

 Central Processing Unit

input

1. INPUT UNIT:

 It obtains data from various input devices and place this information at the

disposal of the other units so that information may be processed. Most information is

entered into computer today through keyboard and mouse devices. Information can

also enter by speaking and by scanning images. Some of other input devices are touch

screen (used in ATM’s), joystick, electronic pen etc. unit

 2. CENTRAL PROCESSING UNIT:

 The CPU performs functions similar to the Brain of a human body. It consists

of three components :

 Control unit (CU)

 Arithmetic and Logical unit (ALU)

 Memory unit

INPUT UNIT OUTPUT UNIT

AUXILIARY MEMORY UNIT

 CU

MEMORY UNIT

ALU

7

Control Unit :

The control unit directs all operations inside the computer. It is known as nerve

centre of the computer because it controls and coordinates all hardware operations

i.e. those of the CPU and input-output devices. Its actions are

 It fetches the required instructions from the main storage.

 It also transfers the results from ALU to the memory and onto the output
device for printing.

 It gives command to transfer data from the input device to the memory to

ALU.

Arithmetic and Logic Unit (A.L.U):

It operates on the data available in the main memory and sends them back after

processing, once again to the main memory A.L.U performs two functions

1) It carries out arithmetical operations like addition, subtraction, multiplication
and division .

2) It performs certain logical actions based on AND and OR functions.

3. Memory Unit :

It is also called as main memory / primary memory because, like the human

memory it is able to store information, which can be recalled or accessed when

required. The program of instructions has to be stored in the main memory in order

to make it work automatically.

Types of main memory are :

 Random Access Memory (RAM)

 Read Only Memory (ROM)

Random Access Memory (RAM) : It is a volatile memory i.e., data cannot be

stored permanently. All the data entered into system are directly stored into RAM.

Users can READ from or WRITE into this memory. Once the system is turned off,

these contents will be erased.

8

Read Only Memory (ROM) : It is non-volatile memory i.e., data can be stored

permanently. The contents of ROM can only be read but cannot be changed. Some

variations of ROM are :-

 PROM (Programmable read only memory)

 Contents of this memory are decided by user. Once the chip is

programmed the recorded instructions are permanently loaded during

manufacturing of computer.

 EPROM (Erasable programmable read only memory)

 Similar to PROM but contents of this memory can be changed by exposing

his memory to ultra-violet rays.

 EEPROM (Electrically Erasable programmable read only memory)

 Contents of this memory can be erased electrically and later new

information can be stored.

9

4. Output Unit :

The result of any computer processing has to be communicated to the user. Output

devices translate the computers output into a form understandable to human

beings. Some of the output devices are display screen, printer ,speakers etc.,,,

5. Auxiliary Memory Unit :

It is also called as SECONDARY MEMORY / EXTERNAL STORAGE. These are the

devices that hold the mass of information, which may be transferred during

processing. These devices are used for permanent storage of data. As compared to

the primary memory, it has a much larger capacity, but is not as fast. The

computer thus takes slightly more time to retrieve from secondary storage.

Example: Hard disk, Compact disks (CDs)

10

COMPONENTS OF COMPUTER

The major components of computer are HARDWARE & SOFTWARE.

HARDWARE:

 It is a general term used to represent the physical and tangible components of

the computer itself i.e. those components which can be touched and seen. It includes

(1) Input devices

(2) Output devices

(3) Central processing Unit

(4) Storage devices

SOFTWARE:

 It is a general term to describe all the forms of programs associated with a

computer. Without software, a computer is like a human body with out a soul.

 It is a general term to describe all the forms of programs associated with a

computer. Without software, a computer is like a human body without a soul.

The classifications of software are :-

 System software

 Application software

System software includes :-

i) Operating system

ii) Language Translators

OPERATING SYSTEM is the interface between the user and the computer

hardware.

Ex: MS-DOS, Solaris ,Unix , Linux.

11

LANGUAGE TRANSLATOR is a software that accepts input in one language and convert

them into another language.

The types of translators are :

 Compiler

 Assembler

 Interpreter

Application software is a set of programs that allows the computer to help users in

solving problems.

Ex:- MS-OFFICE , web browsers etc.,,

OPERATING SYSTEM (OS)

An operating system is a set of programs which acts as an interface between the user of

computer and the computer hardware. User or application programs uses the hardware

indirectly through operating system

The OS controls and co- ordinates the use of hardware among the application programs

The primary aim of OS is to provide convenience to the user in using the system.

The secondary aim is to use the system hardware in an efficient way.

The OS is used to manage the various resources and operations of the computer

system.Depending on the manfacture,the OS is called by the different names such as

monitor, supervisior , executive, kernel.

The major functions of OS are:

 Scheduling and loading of programs in order to provide a continuous job processing

sequence.

 Controlling the hardware resource such as I/O devices,secondary storage device

etc.

 Protecting hardware ,software,and data from the improper use.

 Memory and CPU time management.

12

 File and software management.

 Facilitates easy communication between the computer and the user.

A typical OS will have the following modules

a)CPU Schedules: it allocates CPU to the various resources such as I/O devices, memory

devices etc.,

b)Device Manger : It makes devices functional .it manages various input and output

devices that are interfaced with the system at later date.

c)File Manager : it provides facilities to the users for using the system efficiently.It

also makes the usage of system easy.

d)Other Utilities: For information maintenance such as text editor, copy file from one

media to another ,make the various modules usable etc.

Evolution of OS :

1.Batch Processing:several jobs are stacked together and processed them in

groups(batches) for efficient operation. several programs run one after another without

need of human operator to run each program individually

2.Multi Programming or Multitasking:Multiprogramming refers to the interleaved

execution of two or more different and independent programs by the same computer.in

this technique ,more than one program are kept in the memory. The OS starts executing a

job .when the job needs to perform an I/O operation OS switches the CPU to next

job.when the job waits,CPU is switched to execute another job, and so on.Finally,the first

job will have finished waiting and will get the CPU back ,As long as there is some job to

complete, the CPU will never be idle.

3.Time sharing:A time shared OS allow several users to share the computer on time basis.

Many programs reside in main memory. The CPU allots a fixed time slice or quantum to

each job. when the time slice of a job expires or the job need to perform an I/O operation

,the OS switches the CPU to next job in the queue .As the CPU switches rapidly from one

job to the next job ,users of the computer feel that they are working independently while

one computer is shared among many user actually.

4.Multi Processing: A multiprocessing system is one in which more than one processor are

linked together in a co coordinated way.They share main memory and I/O devices. They

can also execute portions of the same program

13

1. Compiler

 A compiler is a program which translates a high level language program into

machine language of the host computer.

 It translates all the instructions of HLL program at a time. A compiler also

produces the error messages that occurs during translation.

 Once a program is error free , then the compiled software is not needed in

the memory because the machine code itself can be used again and again.

Ex: Pascal complier , C Complier, COBOL Complier.

2. Interpreter

 A interpreter is a program which translate s a high level language program

into machine language of the host computer.

 It translates each instruction and executes it immediately. If there is any

error in any line ,it shows the error message at the same time and program

execution cannot continue until the error is rectified.

 Once a program is error free ,the memory is unnecessarily occupied by

interpreter as it has to reside for every run.

3. Assembler

An assembler is program which translates an assembly language program into the

machine language. It gives one machine language instruction for each assembly

language instruction. It also produces error messages .

Ex: 8085 assembler,8086 assembler

High level lang. Machine code COMPILER

High level lang. INTERPRETER Machine code

Assemble level

lang.

 ASSEMBLER Machine code

14

Differences between Compiler and Interpreter

Compiler Interpreter

Popular for developed programs. Popular in program development

environment.

Converts entire code at a time. Converts the code line by line.

Creates a permanent object file. No object file is created.

Reports all the errors at a time. It stops at the first error in program.

TYPES OF PROGRAMMING LANGUAGES

A language is meant for communication purpose

Natural language like English, Hindi, Telugu etc., are generally used by human

beings to communicate with each other.

With these languages we can express or exchange our ideas.

Similarly a computer language is used for communication between human being

and the computer.

A program language can be defined as a language used for expressing a set of

computer instructions called program

 Computer languages

 Low level languages High level languages

Machine languages Assembly languages

15

MACHINE LANGUAGE

MLL can be defined as a set of instructions coded so that the computer can use it

directly without further translation

Advantages of machine Language:

1.Computer understands only the machine language

2.Programs run very fast

Limitations of Machine Language:

1.Programmer has to remember the following

a)Binary equivalent to the OP code

b)Binary address of the memory location being used

2.Programmer written in machine language are very lengthy

3.Difficult to correct /modify programs

4.Machine language is machine dependent. That is program written for a particular

computer has to be changed for using on a different computer.

ASSEMBLY LEVEL LANGUAGE:

Each instruction of assembly level language contains

a) symbolic operation code and
b) symbolic address

Ex:

ADD is mnemonic op code for addition

SUB is mnemonic op code for subtraction

LOAD is mnemonic op code for loading

16

STORE is mnemonic op code for storing

Suppose to add two number stored in locations B and C and store the result in

storage location D

assemble language program as follows:

LOAD B load the contents of B into accumulator

ADD C add the contents of C to accumulator

STORE D store the result (contents of accumulator)into storage location D

Advantages of assembly Language:

1. Program correction /modification is relatively easier

2. Less time is required in writing a program than machine language

3. Language is simple when compared with machine language

Limitations of assembly Language:

1.Execution of program takes more time as it has to be converted into machine

language

HIGH LEVEL LANGUAGES(HLL)

These are English like languages that are close to our native language.

Ex: BASIC, COBOL, FORTAN, PASCAL, C etc.,

Suppose to add two number stored in locations B and C and store the result in

storage location D

Pascal : D:=B+C;

Cobol : ADD B to C GIVING D

C : D=B+C

17

Advantages of High level Language:

1.The High level Language are easier to use and understand than the machine

languages and the assembly language

2. The programs written in HLL are much more compact and self explanatory than

their low level counterparts

3. High level Language are provide a better documentation than low level

languages.

4. High level Language are machine independent

5. 2.Program correction /modification is much easier than low level languages.

Limitations of High level Language:

1.Less efficient as they take more execution time when compared to low level

languages

2.The programmer cannot completely connect the total power available at hardware

level .

18

ALGORITHM

A step-by-step problem-solving procedure for solving a problem in a finite

number of steps is known as algorithm.

Properities of the algorithm are :-

) Finiteness: - an algorithm terminates after a finite numbers of steps.

2) Definiteness: - each step in algorithm is unambiguous. This means that

the action specified by the step cannot be interpreted (explain the meaning

of) in multiple ways & can be performed without any confusion.

3) Input:- an algorithm accepts zero or more inputs

4) Output:- it produces at least one output.

5) Effectiveness:- it consists of basic instructions that are realizable. This

means that the instructions can be performed by using the given inputs in a

finite amount of time.

Example : algorithm to find the sum of ‘n’ integers

Step-1 : begin

Step-2 : initialize variables s=0 and n

Step-3: enter the number integers

Step-4: enter the elements

Step-5: calculate sum using s = n*(n+1)/2

Step-6: print n value

Step-7: end

19

FLOWCHART

Pictorial representation of an algorithm in known as flowchart.

Different symbols used in flow chart are :

20

ADVANTAGES OF USING FLOWCHARTS

The benefits of flowcharts are as follows:

1. Communication: Flowcharts are better way of communicating the logic of a

system to all concerned.

2. Effective analysis: With the help of flowchart, problem can be analysed in

more effective way.

3. Proper documentation: Program flowcharts serve as a good program

documentation, which is needed for various purposes.

4. Efficient Coding: The flowcharts act as a guide or blueprint during the systems

analysis and program development phase.

5. Proper Debugging: The flowchart helps in debugging process.

6. Efficient Program Maintenance: The maintenance of operating program

becomes easy with the help of flowchart. It helps the programmer to put efforts

more efficiently on that part

LIMITATIONS OF USING FLOWCHARTS

1. Complex logic: Sometimes, the program logic is quite complicated. In that

case, flowchart becomes complex and clumsy.

2. Alterations and Modifications: If alterations are required the flowchart may

require re-drawing completely.

3. Reproduction: As the flowchart symbols cannot be typed, reproduction of

flowchart becomes a problem.

4. The essentials of what is done can easily be lost in the technical details of how

it is done.

21

 Flow chart for finding the sum of first 50 numbers

22

Flowchart for finding maximum of 3 numbers

NOTE :

Practice writing algorithms for as many programs as possible.

23

NUMBER SYSTEM

A number system of base (or radix), r is a system that uses distinct symbols for r digits. To determine the

quantity that the number represents, it is necessary to multiply each digit by an integer power of r and

then form the sum of all weighted digits.

They are of four types:

1. Decimal number system.
2. Binary number system.
3. Octal number system.
4. Hexa decimal number system.

Decimal number system:

The decimal number employs the radix – 10.

Ex:- 724.5(10) is represented as

 7 2 4 . 5

 102 101 100 10-1

= 7*102 + 2*101 + 4*100 + 5*10-1 = 700+20+4+0.5

Binary number system:

The binary number system uses the radix 2. The two digit symbols used are 0 and 1.

Ex:- 1101(2) is represented as

24

 1 1 0 1 =1*8 + 1*4 + 0*2 +1*1 = 13(10)

 23 22 21 20

Octal number system:

The octal number system uses the radix 8. The eight numbers used in octal system are 0-7.(i.e,

0,1,2,3,4,5,6,7).

 Ex:- 34.6(8)

 3 4 . 6

 81 80 8-1

= 8 * 3 + 1 * 4 + 6 * 0.125 = 24 + 4 + 0.75 = 28.75(10).

Hexa decimal number system:

The hexa decimal number system uses the radix 16. The sixteen numbers used in hexa decimal system

are 0-F.(i.e., 0,1,2,3,4,5,6,7,8,9,A-10,B-11,C-12,D-13,E-14,F-15).

Ex:- F3(16)

 F 3 = 15 * 16 + 3 * 1 = 240 + 3 = 243(10).

25

 161 160

CONVERSIONS

Decimal to Binary:

1) 36 2 | 36
2 | 18 - 0

2 | 9 - 0

2 | 4 - 1

2 | 2 - 0

 | 1 - 0

So binary equalent of 36(10) is (1 0 0 1 0 0)(2)

2) 41 2 | 41
2 | 20 - 1

2 | 10 - 0

2 | 5 - 1

2 | 2 - 1

 | 1 - 0

26

So binary equalent of 41(10) is (1 0 1 0 0 1)(2)

Floating point to Binary:

1) 36.12(10) 2 | 36
2 | 18 - 0

2 | 9 - 0

2 | 4 - 1

2 | 2 - 0

 | 1 - 0

 For decimal value 0.12

0.12 * 2 = 0.24

0.24 * 2 = 0.48

0.48 * 2 = 0.96 so binary value for decimal place is taken till

0.96 * 2 = 1.92 1.92 – i.e., (0 0 0 1)

0.92 * 2 = 1.84

0.84 * 2 = 1.68

So binary equalent of 36.12(10) is (1 0 0 1 0 0 . 0 0 0 1)(2)

2) 14. 625(10) 2 | 14

27

2 | 7 - 0

2 | 3 - 0

 | 1 - 1

0.625 * 2 = 1.25

0.25 * 2 = 0.50

0.5 * 2 = 1.0 so binary value for decimal place is taken till

 Last – i.e., (1 0 1)

So binary equalent of 14.625(10) is (1 1 0 0 . 1 0 1)(2)

 Binary to Decimal:

1) (1 0 0 1 0 0)(2)

1 0 0 1 0 0

25 24 23 22 21 20

1 * 32 + 0 + 0 + 1 * 4 + 0 + 0 = 32 + 4 = 36(10).

2) (1 0 0 0 0 1)(2)

1 0 0 0 0 1

28

25 24 23 22 21 20

1 * 32 + 0 + 0 + 0 + 0 + 1 * 1 = 32 + 1 = 33(10) .

Octal number to Binary number:

Convert each number to Binary format using 3 Binary digits.

1) 72(8) - (1 1 1 0 1 0)(2)
2) 64(8) - (1 1 0 1 0 0)(2)

Hexa Decimal number to Binary number:

Convert each number to Binary format using 4 Binary digits.

1) AF(16) - (10 15) - (1 0 1 0 1 1 1 1)(2)
2) A3(16) - (10 3) - (1 0 1 0 0 0 1 1)(2)

Hexa Decimal number to Decimal number:

1) 30(16) - 3 * 161 + 0 = 48 + 0 = 48(10)
2) B65F(16) - 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = 46687(10)

Octal number to Decimal number:

1) 630(8) - 6 * 82 + 3 * 81 + 0 + 4 * 8-1 = 384 + 24 + 0 + 0.5 = 408.5(10)

Binary number to Octal number:

29

1) (101 100 011 010 111 . 111 100 000 110)(2) = 54327.7406(8)
------ ---- ---- ---- ---- ---- ---- ----- ----

 5 4 3 2 7 7 4 0 6

2) (11 100 . 1 001)(2) = 34.11(8)
------ ---- -- -----

 3 4 1 1

Binary number to Hexa Decimal number:

1) (0101 1111 0001 1010 . 1110 0011)(2) = 5F1A . E3(16)
-------- ------ ------ ------- ------- ------

 5 F 1 A E 3

2) (101 1010 1110 . 1100 0010)(2) = 5AE . C2(16)
 ------ ------ ------- ------- -------

 5 A E C 2

30

HISTORY OF C

 ‘C’ language was evolved from two previous languages. BCPL and B.

 ‘C’ is developed by Dennis Ritchie at bell laboratories and was originally

implemented on a PDP-11 computer in 1972.

 C uses many of the important concepts of BCPL and B while adding data

typing and other powerful features.

 C initially became widely known as the development language of the UNIX

operating system.

 Today all new major operating systems are written in C and C++.

 ‘C’ is a hardware independent. With careful design it is possible to write C

programs that are portable to most computers.

CHARACTERISTICS OF C-LANGUAGE

1. MODULARITY: means ability to break down large modules into sub-modules.

The programming language which supports modularity is called as modular

programming language.

2. EXTENDIBILITY: ability to extend the already existing software by adding

new features to it. C software can be extended.

3. PORTABILITY: it is the ability to install (port) the existing software in

different platforms. C software can be installed in any platform.

Ex: - Windows platform, Linux platform.

4. SPEED: programs written in C are very efficient and fast. This is due to

variety of data types and operators available in C. There are only 32

keywords in C and they form the basic building of C-languge.

WHY C LANGUAGE CALLED MIDDLE LEVEL LANGUAGE ?

 Though ‘C’ is a high level language, it is often referred to as middle level

language because programs written in ‘C’ language run at the speeds

matching to that of programs written in assembly language.

 The speed of the ‘C’ language programs is very fast. That’s the reason ‘C’

language is used in system software’s (programs interact with the

hardware e.g.. device drivers and operating systems).

31

GENERAL FORMAT OF A ‘C’ PROGRAM

Documentation Section : To increase the readability of the program the

programmer should write the appropriate explanation regarding the statements in

the program. These explanatory lines are known as COMMENTS and are not

executed by the compiler. Comments are written as given below:-

/* …………………comments………………..*/

Comments can be written anywhere in the program.

Documentation section

Link section

Definition section

Global declaration section

main() function section

{

 Declaration part

 Executable part

}

Sub-program section

Function1();

Function2();

.

.

Function n();

32

Link Section : This section contains the header files which contains library

functions.They can be declared as:-

 #include< header-file>

By writing a statement in the format as shown above, we are calling the compiler to

include all the respective functions present in a header file into our program.

Ex: #include<stdio.h> /* this header filer includes the printf() and scanf()*/

 #include<conio.h> /* this header file includes clrscr() and getch() */

Definition section : This section is to define constants in the program and their

value cannot be changed throughout the execution of the program.

Syntax: #define constant_name constant_value;

Ex: #define PI 3.14;

/* In the program wherever we are using PI the constant value 3.14 will be

replaced and cannot be changed. */

Global declaration section : The variables declared above main() are known as

global variables and these variables can be accessed anywhere in the program.

main() :

 Execution of every c-program starts with main() function.

 It must be written in lower-case letters.

 There must be one and only one main() in a c-program

 Any program in c cannot be executed without main() function.

Curly braces:

 { indicates the beginning of the program or a function.

 } indicates end of the program or function.

Declaration part: In this section, variables of different data types are declared

and may be initialized.

Syntax: datatype variable name;

Ex:- int a; /* variable ‘a’ of integer datatype is declared */

33

Executable part: The sequence of steps to be executed (logic), in order to solve a

particular program will be written here and the compiler will process the input data

according to the steps written by the programmer and displays the output .

Sub-program section : The series of tasks that are to be performed by the main()

are divided into individual modules / sub-programs which are known as

FUNCTIONS. Each function will perform a particular task and returns a value to

main() if specified by the programmer.

BASICS OF TYPICAL ‘C’ PROGRAM DEVELOPMENT ENVIRONMENT

C programs typically go through six phases to be executed .These are

 Edit

 preprocess

 compile

 link

 load and

 execution

Edit: The first phase consists of editing a file. This is accomplished with an editor program. The

programmer types a C program with the editor and makes corrections if necessary, then storing the

program on a secondary storage device such as a disk. C program file names should end with the .C

extension.

Preprocess: The preprocessor is automatically invoked by the compiler before the program is

converted to machine language. A preprocessor program executes automatically before the

compiler’s translation phase begins.

Compile: Next, the programmer gives the command to compile the program. The compiler

translates the C program into machine language code (also referred to as object code).

Link: Linker links the object code with the required functions to produce an executable code.

Load: The next phase is loading. Before a program can be executed, the program must first be

placed in memory. This is done by the loader, which takes the executable code from disk and loads

in to the memory. Additional components from shared libraries that support the program are also

loaded by the loader.

All these phases should be written in the

same sequence

34

Execution: Finally, the computer under the control of the CPU executes the program one

instruction at a time. After executing the program we get the required output.

 EDITOR

PREPROCESSOR

 COMPILER

 LINKER

 LOADER

DISK

 CPU

 DISK

 DISK

 DISK

 DISK

PRIMARY

MEMORY

Program is

created in editor

and stored in

disk

Preprocessor

program

process the

code

Compiler

creates object

code stores it on

disk.

Linker links the

object code with

the librararies

Loader puts

program in

memory.

CPU takes

each instructs

and executes

it, possibly

storing new

data values as

the prg

executes.

35

STEPS IN LEARNING C-LANGUAGE :

CHARACTER SET IN C-LANGUAGE :

A Character denotes any alphabet, digit or special symbol used to represent

information. There are 255 characters defined in c. Every character is represented

with an ASCII value. ASCII stands for AMERICAN STANDARD CODE FOR

INFORMATION INERCHANGE.

CHARACTERS

SYMBOLS

ASCII VALUES

ALPHABETS

A,B,C…………..Z

a,b,c,……………z

65-90

97-122

DIGITS

0,1,2,3,………..9

48-57

SPECIAL

SYMBOLS

~,!,@,#,$,%,^,&,*,(,),_,+,

|,`,.,>,<,=,-,?,/,\,},{,[,]

:,;,, etc

0-47,58-64,91-96

123-127

Alphabets,

Digits,

Special symbols.

Constants,

Variables,

Keywords.

 Instructions program

36

C – TOKENS

In a passage of text, individual words and punctuation marks are known as tokens.

Similarly, in C , the smallest individual units are called as C-TOKENS.

There are six types of c-tokens:-

 Keywords

 Identifiers (variables)

 Constants

 Special symbols

 Strings

 Operators

CONSTANTS: are referred to fixed values whose value do not change during the

execution of c –program

C constants are divided into two categories:

(1) Primary constants
(2) Secondary constants

 C CONSTANTS

Primary Constants Secondary Constants

1) Integer Constants

2) Real Constants

3) Character Cons

4) String Constants

1) Array
2) Pointer
3) Structure
4) Union

37

INTEGER CONSTATNTS

a) An Integer constant must have at least one digit.

b) It must not have a decimal point.
c) It can be either positive or negative.

d) If no sign precedes it considers as positive no.
e) No commas or blanks are allowed within an integer constant.
f) The allowable range for integer constants is -32768 to 32767.

 Valid-Ex: 426 Invalid Ex:- 546.89 (decimal point)

 +789 10,000 (comma is present)

 -3456 20 000(blank is present)

REAL CONSTANTS

 a) A Real constants must have at least one digit.

 b) It may or may not have a decimal point.

 c) It can be either positive or negative.

 d) If no signs precede it considers as positive no.

 e) No commas or blanks are allowed within a real constant.

 EX: 325.345

 -345.322

CHARACTER CONSTANTS

 A character constant is a single alphabet, a single digit or a single special

symbol enclosed with in ‘ ’(single inverted commas).

a) The maximum length of a character constant can be 1 character. If more
than 1 characters it is not a character constant.
Valid Examples: ‘a’ Invalid : ‘ab’

 ‘1’ ‘34’

 ‘%’ ‘2a’

 ‘&’

 Note: Character constant stored in 1 byte

38

STRING CONSTANTS:

 A single character or group of characters enclosed in “ “(double quotes) is

called as string constant.

 Examples: “a” “ab” “Hello” “2345”

 NOTE: String constants stored in 2 bytes.

39

REPRESENTATION OF NUMBERS

INTRODUCTION:

Language is used for communication.

Language  HLL  english-like language/human understanding language.

 LLL  machine language. (binary format ie, 0 and 1)

1. The english like language which we use may consists of:-

a) Alphabets,

b) Numbers,

c) Special symbols.

2. Each of the above is assigned with a specific number called as ASCII code.

Ex: - a  97, A  65, etc.

3. Whatever the code, we write on system is converted to binary format(0,1).

4. All these binary format are stored in registers.

5. Register is a collection of flip-flops.

Flip-flop is the smallest cell, which can hold a value.(0 off state, 1 on state).

Ex: - 4-bit register is a combination of 4 flip-flops.

- Number representation in binary format, can be expressed in 2ways:

a) FIXED-POINT REPRESENTATION,

b) FLOATING-POINT REPRESENTATION.

FIXED-POINT REPRESENTATION: - means the position of decimal point is fixed.

Ex: - 0.5, 0.1, etc.

FLOATING-POINT REPRESENTATION: - means the position of decimal point is changing as per requirement.

 Ex: - 1/3 =0.3333 = 3.333*10-1 =33.33*10-2 etc.

FIXED-POINT REPRESENTATION

- If in a register (r1), if the decimal position is fixed at right most position  value is an integer.

- If in a register (r1), if the decimal position is fixed at left most position  value is an fraction.

Ex: - 10.25

 R1 R2

 10. .25

 Integer Fraction

- The representation / manipulation in arithmetics or any processing of data in a register(computer) is done

in the following manner.

a) Whenever we give a number without representing its sign, by default it is positive.

b) As, in computer, it performs only addition.(-, *, /, % operations done only in form of addition).

Ex: - A + B = A + B.

 A – B = A + (-B).

40

So,we need to have separate representation for positive and negative numbers.

REPRESENTATION OF THE POSITIVE NUMBERS

+ 2 = 0 0 1 0 (4-bit repn).

REPRESENTATION OF THE NEGATIVE NUMBERS

1. Representating a negative number or a number in negative form is of 3 types: -

- SIGNED-MAGNITUDE REPN:

The magnitude is represented in the same form and sign bit is ‘0’ for positive and ‘1’ for negative.

Ex: - + 2 = 0 0 1 0

 -2 = 1 0 1 0

When we go for signed repn, left most bit represents sign and remaining bits give magnitude.

Ex: - 4-bit repn

Unsigned : highest value = 15 = 1 1 1 1

Signed : highest value = 7 = 0/1 1 1 1

- SIGNED-1’S COMPLEMENT REPN:

As, we need to have separate repn for negative and positive numbers, we take 1’s complement form for

negative numbers.

+ 2 = 0 0 1 0

-2 = 1 1 0 1 (1’s complement form – changing 1 to 0 and vice-versa).

- SIGNED-2’S COMPLEMENT REPN:

When we have arithmetic calculation for zero, we need to have the same repn for +0 and -0. So, to have

same repn for both, we take 2’s complement form for negative numbers.

Ex: - +2 = 0 0 1 0

 -2 = 1 1 0 1 (1’s complement repn)

 + 1

 -2 = 1 1 1 0 (2’s complement repn)

ARITHMETIC ADDITION: -

3 + 2 = 5;

 Sign magniutde

3 = 0 0 1 1

2 = 0 0 1 0

5 = 0 1 0 1 (0 – positive, 1 0 1 – 5)

41

ARITHMETIC SUBTRACTION: -

+3 - 2 = +1;

 Sign magniutde

+3 = 0 0 1 1

-2 = 1 1 1 0 (take -2 in 2’s complement repn)

+1 = 0 0 0 1 (0 – positive, 0 0 1 - 1)

Carry is discarded, as we are taking 4-bit register.

Whenever we add, 2 positive numbers or 2 negative numbers, the resultant answer will be above the capacity of

resultant register.

Ex: - 6 + 7

6 = 0 1 1 0

7 = 0 1 1 1

-5 = 1 1 0 1 (carry from magnitude is added to the sign bit).

So go for 8-bit register.

6 = 0 0 0 0 0 1 1 0

7 = 0 0 0 0 0 1 1 1

13 = 0 0 0 0 1 1 0 1

- so, resultant register should be high enough to hold the result including its sign.

- This carry from the magnitude bit into sign bit is called as “overflow”.

- To overcome, overflow situation, we need to take the values according to registers capacity.

42

Variables:

Variable names are the names given to memory location. A variable is a location in

the memory that can hold a value. An entity that may change during execution of a

program is called a variable. These locations contain integer/character constants.

Ex: - int n;

Data type variable

RULES FOR DECLARING VARIABLES:

1. A variable name is any combination of alphabets, digits or underscore

2. First character in the variable name must be an alphabet or underscore.

3. A Variable name should not be a keyword.

4. White spaces are not allowed.

5. No other characters except underscore (_) should be used.

Ex:-

int n ; allowed

float area ; allowed

int area of circle ; not allowed

int area_of_circle; allowed

int char ; not allowed

float int ; not allowed

Keywords:

In ‘C’ every word is classified into either a keyword or an identifier(refer name of

variable). All keywords have fixed meaning and this cannot be changed.

Keywords are reserve words whose meaning has been explained to the

system.(i.e., C compiler). System defined words can be called as ‘keywords’.

Keywords canno0t be used as variable names.

- Keywords serve as a basic building block for program statement.

- All the keywords must be written in lower case letters.

- There are 32 keywords available in ‘C’ language.

They are:

auto else long switch

break enum register typedef

case extern return union

43

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

double int struct do

 main() is not a keyword.

Arithmetics in C:

‘c’ evaluates arithmetic expressions in a sequence determined by the following

rules of precedence:-

 Expressions in pair of parenthesis are evaluated first. If there are more than

one pair of parenthesis, then, innermost parenthesis expressions are

evaluated first.

Ex:

 (10 (5 (6 + 2)))

This expression is evaluated first

 Multiplication, division and modulus operations are evaluated next. If an

expression contain several multiplication, division and modulus operations ,

then evaluation starts from left and then proceeds to right.

 Addition and subtraction operations are evaluated at last. If many + and –

operators are there in an expression, then evaluation proceeds from left to

right.

Example :-

Evaluate the expression 2*((9/3)+4*(5-2))

= 2 * ((9/3) + 4 * (5-2))

= 2 * (3 + 4 * (5-2))

44

= 2 * (3 + 4 * 3)

= 2 * (3 + 12)

= 2 * 15

= 30

MATHEMATICAL EXPRESSION C – EQUALENT FORM

a+b a+b

x * y
z

(x * y) / z

(a+b)2

(a-b)2

((a+b) * (a+b)) / ((a-b) * (a-b))

2x2 + 3y+ 1 2*x*x + 3*y +1

DATA TYPES IN C
There are various kinds of data types available in c that allows programmer, to use

appropriate data type for the program.

 DATA TYPE

 BASIC (or) PRIMARY DERIVED (or) SECONDARY

 DATA TYPES DATA TYPES

Integer Character Float Double Array Union Pointer Structure

DATA TYPES NUMBER OF

BYTES

FORMAT

SPECIFIER

RANGE

Signed Char 1 %c -128 to 127

Unsigned Char 1 %c 0 to 255

Short Signed Int 2 %d -32768 to 32767

Short Unsigned Int 2 %u 0 to 65535

Long Signed Int 4 %ld -2147483648 to

45

2147483647

Long Unsigned Int 4 %lu 0 to 4294967295

Float 4 %f -3.4e38 to 3.4e38

Double 8 %lf -1.7e308 to
1.7e308

Long Double 10 %Lf -1.7e4932 to
1.7e4932

TO PRINT TEXT IN C :

 In order to print text or values in c-language we printf() statement.

 This printf() statement in defined in a header file called stdio.h (standard input

output)

 Syntax for printf() statement is :

printf(“ text to be displayed”);

 In order to print the value of a variable printf() should be written in the

following way: printf(“ format specifier ” , variable);

TO ASSIGN VALUES TO VARIABLES IN C :

Two ways of assigning values to variables in he program is:

1. Initializing the value in the program itself.

Ex: int x = 20;

2. Assigning values at run-time (using scanf() statement)

SYNTAX OF SCANF STATEMENT :
Scanf() statement is used to assign values at run-time i.e., at the time of executing the

program.

Syntax for scanf() is :

46

scanf (“format specifier “, address of variable);

example:

int x;

scanf(“%d”,&x);

printf(“%d”, x);

EVALUATION OF EXPRESSIONS:

An arithmetic expression is a combination of variables, constants and operators

arranged as per the syntax of the language. Every arithmetic expression is

evaluated according to the precedence rules. Precedence rules tells to compiler

that while executing expressions, what operators are executed first, what are

their executions and what is result.

The basic evaluation procedure includes two or more left-to-right passes through

the expression. During the first phase the higher priority operators (if any) are

evaluated. In next phase the next level operators are applied. This continues upto

last level.

47

The order of precedence for different operators is :

Precedence Execution Order

(),[], -> left-to-right

++,-- right-to-left

! right-to-left

Unary minus(-) right-to-left

Sizeof right-to-left

 *, /, % left-to-right

+, - left-to-right

<<,>> left-to-right

< ,<=, >, >= left-to-right

== ,!= left-to-right

&& left-to-right

|| left-to-right

?: right-to-left

=,%=,*=,/=,+=,-= left- to-right

 OPERATORS IN C-LANGAUGE

OPERATOR: An operator is a symbol which instructs the computer to perform a certain

task. The operand is a value on which the operation is performed.

OPERAND : A variable or constant on which the operation is performed.

Ex: a + b = c [here, a,b,c are known as operands and +,= are known as operators.]

An operator may either Unary or Binary.

Unary operator means which act on only single operand. Ex: a++

48

Binary operator means which acts on two operands. Ex: a+b

The types of operators present in c are:-

1. Arithmetic operators 2. Assignment operators

 3. Bitwise operators 4. Conditional operators

 5. Increment & Decrement operators 6. Logical operators

 7. Relational operators 8. Special operators

1. Arithmetic operators:

The different arithmetic operators are:

 + (Addition), - (Subtraction), * (multiplication), / (Division) and % (Modulus)

Here + & - act as both Unary and Binary.

Any operation between two integers yields result as an Integer.

Any operation between two floats yields results as a float.

Any operation between an integer and float results in float value.

i.e. If two operands are of different type, then the result is larger data type among these

two.

Difference between division and modulo division is that :
 Consider:

445 / 10 = 44

440 % 10 = 5

When we divide 445 with 10 its quotient will be 44 which is result or normal division

operation.

Where as for modulo division the result of integer division will be the result of modulo

division. When we divide 445 with 10 remainder is 5 which is result of modulo

division.

2. Relational operators:

These are used for comparison. These are used for decision making.

An expression containing a relational operator is termed as a relational expression.

49

The value of a relational expression is either zero or one. If the value is zero then it is

false, if the value is nonzero then it is true.

The different relational operators are:

< (less than), <= (less than or equal to), > (greater than), >= (greater than or equal to),

== (is equal to), != (not equal to)

A simple relational expression contains only one relational operator and takes the

following form: ae1 relational operator ae2.

3. Logical operators:

&& (Logical AND), || (Logical OR), ! (Logical NOT)

&&, || are used when we want to test more than one condition and make decisions. An

expression which combines two or more relational expressions is termed as a logical

expression. Logical expressions yields zero or nonzero according to the truth table.

OP1 OP2 && ||

Nonzero Nonzero Nonzero Nonzero

Nonzero Zero Zero Nonzero

Zero Nonzero Zero Nonzero

Zero Zero Zero Zero

4. Assignment operators:

These are used to assign the result of an expression to a variable.

 The general form is: V op = exp;

Here V is a variable expression is an expression and op is a binary arithmetic operator.

V op = exp is equal to v = v op (exp);

Ex: a+=10; is equal to a=a+10;

These are

+=, -=, *= and %=

These are also called shorthand operators. The advantages are:

OP ! NOT

Nonzero Zero

Zero Nonzero

50

 The left side operand need not be repeated and therefore easier to write.

 The statement is more concise and easier to read.

 The statement is more efficient.

5.Increment and Decrement operators:

C has 2 very useful operators which are generally not found in other languages.

These are ++ (Increment), - - (decrement)

++integer_variable indicates pre-increment operation in which, first the value of

variable is incremented and then specified instruction is performed.

integer_variable++ indicates post-increment operation in which, first the specified

instruction is performed and then the value of variable is incremented .

--integer_variable indicates pre-decrement operation in which, first the value of

variable is decremented and then specified instruction is performed.

integer_variable-- indicates post-decrement operation in which, first the specified

instruction is performed and then the value of variable is decremented.

Ex:-

int a=10 , b ;

Pre -increment Post - increment

b = a++; b = ++a ;

b = a ; a = a + 1 ;

a = a + 1 ; b = a ;

b = 10 , a = 11 ; b = 11 , a = 11 ;

--

Pre - decrement Post - decrement

b = a-- ; b = --a ;

b = a ; a = a - 1 ;

a = a - 1 ; b = a ;

b = 10 , a = 9 ; b = 9 , a = 9 ;

51

6. Conditional or Ternary operators:

A ternary operator pair “?:” is available in C to construct conditional expressions of the

form

exp1?exp2:exp3;

Here exp1 is evaluated first. If it is nonzero (true), then the expression exp2 is evaluated

and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its

value becomes the value of the expression. Only one of the expressions (either exp2 or

exp3) is evaluated.

7. Bitwise operators:

C has a distinction of supporting special operators known as bitwise operators for

manipulation of data at the bit level. These operators are used for testing the bits, or

shifting them right or left. Bitwise operators may not be applied to float or double. These

are & (bitwise AND), | (bitwise OR), ^ (bitwise ExOR), <<(shift left), >> (shift right),

~ (complement).

Bit1 Bit2 & | ^

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Bit ~

0 1

1 0

52

Examples:

 a=5 b=11

a&b a|b a^b

00000101 00000101 00000101

00001011 00001011 00001011

-------------- -------------- --------------

00000001 00001111 00001110

~a=~(00000101)

11111010

<<:Left Shift

Bits will be moved towards left by one position ,0 will be added at the right most bit and

left most bit will be lost.

a<<2

5<<1= 00001010

 <<2= 00010100

>> : Right Shift

Bits will be moved towards right by one position ,0 will be added at the left most bit and

right most bit will be lost.

a>>2

5>>1=00000010

 >>2=00000001

8. Special operators:

These are comma operator, sizeof() operator,Ampersand(&). Comma(,) operator can be

used to link the related expressions together.

53

Sizeof operator returns the number of bytes required for the operand storage.

Ampersand symbol is used to denote the address of a variable.

Example :

int x;

printf(“%d”, sizeof(x)); // output will be 2

TYPE CONVERSION:

When an operator has operands of different types, they are converted to a common type

according to a small number of rules. In general, the only automatic conversions are those

that convert a ``narrower'' operand into a ``wider'' one without losing information, such as

converting an integer into floating point in an expression like f + i. Expressions that

don't make sense, like using a float as a subscript, are disallowed. Expressions that

might lose information, like assigning a longer integer type to a shorter, or a floating-

point type to an integer, may draw a warning, but they are not illegal.

If either operand is long double, convert the other to long double.

Otherwise, if either operand is double, convert the other to double.

Otherwise, if either operand is float, convert the other to float.

Otherwise, convert char and short to int.

Then, if either operand is long, convert the other to long.

explicit type conversions can be forced (``coerced'') in any expression, with a

unary

operator called a cast. In the construction

(type name) expression;

the expression is converted to the named type by the conversion rules above. The

precise meaning of a cast is as if the expression were assigned to a variable of the

specified type.

EX:

int y;

y = (int) 9.8;

printf(“%d”, y); // output will be 9 that is fraction part .8 is truncated.

54

CONTROL STRUCTURES IN C-LANGUAGE:

Some times in a program it will be necessary to :-

 Select a set of statements from several alternatives

 Skip certain statements depending on some conditions in the program and

continue execution from some other point

 Repeat the execution of certain statements depending on the truthness of

the condition.

Under such conditions, the control statements are used. There are three types of

control structures:-

 Sequence control structure

 Selection control structure

 Repetition control structure

SEQUENCE CONTROL STRUCTURE

In this structure, the statements are executed in the same order in which they

appear in the program.

Ex:- #include<stdio.h>

main()

{

 printf(“hello world”);

printf(“ welcome to c”);

}

In the above program both the statements are executed in the order in which they

are written.

SELECTION CONTROL STRUCTURE :

These statements are also called as CONDITIONAL CONTROL STATEMENTS.

In some situations, it is necessary to check the condition to make the decision.

This involves performing a logical test. This results in either true or false.

Depending on the truthness of condition ,some statements are executed.

Thus, this is known as conditional execution. C provides various kinds of control

statements. They are as follows:-

55

 if-statement

 if-else statement

 else-if ladder

 nested-if statement

 switch statement

if statement:-

It is used to execute a statement or set of statements conditionally. It is a simple

‘if’ statement.

Syntax:-

The logical condition will be tested. It results in either true or false. If the

condition is true the statements are executed or else not executed and the

control is transferred to the next executable statement i.e, statement-x.

The simple-if statement is demonstrated by a sample program given below:-

 main()

 {

 int a;

 printf(“ enter value of a “);

 scanf(“%d”,&a);

 if(a>10)

 {

 printf(“ a is greater than 10”);

 }

 printf(“ if statement not executed”);

 }

In the above program:-

 If the value of ‘a’ is greater than 10 then the statement in if block is

executed.

 If the value of ‘a’ is less than 10 then the if block will not be executed and

the control transfers to next executable statement i.e, printf(“ if statement is

not executed”).

if(condition)

{

 Statements;

}

 Statement-x;

56

if-else statement:

The if/else structure performs an action if the condition is true and performs a

different action if condition is false. The if/else structure is called double-selection

structure because it selects between two different actions.

Syntax:

If the condition is true, then statement-1 is executed, other wise; the control

moves to else part and statement-2 is executed.

If-else is demonstrated by the following program:-

/* program to find whether a number is even or odd */

#include<stdio.h>

#include<conio.h>

void main()

{

 int a;

 printf(“Enter the no\n”); OUTPUT :Enter the no 21

 scanf(“%d”,a); 21 is odd

 if(a%2==0)

 printf(“ %d is even”);

 else

}

Value of ‘a’ is given as 21…and 21%2 is not equal to zero…so, the control is

transferred to else part leaving if block.

if(condition)

{

 Statement-1;

}

else

statement-2;

57

Else–if ladder :

 There is another way of putting ifs together when multipath decisions are

involved. A multipath decision is a chain of ifs in which the statement associated

with else is an if

Syntax of else-if ladder is :-

If(condition 1)

{

Statement 1;

}

else if(condition 2)

{

Statement 2;

}

else if(condition 3)

{

Statement 3;

}

else

 default statement;

statement-x;

58

Example:

/*program to calculate roots of quadratic equations*/

#include<stdio.h>

#include<math.h>

main()

{

 int a,b,c;

 float r1,r2,d;

 printf("Enter the coefficients of equation\n");

 scanf("%d %d %d",&a,&b,&c);

 d=(b*b)-(4*a*c);

 if(d<0)

 {

 printf("The roots are imaginary");

 }

 else if(d==0)

 {

 printf("Roots are equal\n");

 r1=-b/(2*a);

 r2=r1;

 printf("r1=%f r2=%f",r1,r2);

 }

 else if(d>0)

 {

 printf("Roots are real");

 r1=(-b+sqrt(d))/(2*a);

 r2=(-b-sqrt(d))/(2*a);

 printf("r1=%f r2=%f",r1,r2);

 }

}

59

Nested –if statement :

Writing one “if” statement within another “if” statement is known as nested-if

statement. When there are more than one condition to be tested then nested-if

structure is used. The syntax for nested-if statement is as follows:-

if(condition-1) /* if condition-1 is true then condition-2 is tested*/

{

 if(condition-2) /* if condition-2 is true then statement-1 is executed*/

 {

 Statement-1;

 }

 else /* if condition-1 is true and condition-2 is false the statement-2 is

 executed */

 Statement-2;

}

else if(condition-3) /* if both condition1 and 2 are false then control comes

 to else-if block and condition-3 will be tested.if it is

{ true statement- 3 is o/p or else statement-4 is o/p*/

 Statement-3;

}

else

Statement-4;

60

Nested-if statement is demonstrated by a sample program:-

/*Program to find greatest of three no’s */

#include<stdio.h>

main()

{

 int a,b,c;

 printf(“Enter the values\n”);

 scanf(“%d %d %d”,&a,&b,&c);

if(a>b)

{

 if(a>c)

 printf(“%d is greater”,a);

 else

 printf(“%d is greater”,c);

}

else

{

 if(b>c)

 printf(“ %d is greater”, b);

}

 else

 printf(“ % d is greater”, c);

}

Output : Enter the values 10 54 40 54 is greater

61

Switch Statement :

 The switch selection structure performs one of many different actions depending

on the value of an expression. The switch structure is called multiple-selection

structure because it selects one option among many different options available.

The syntax for switch statement will be:-

The expression is an integer expression or characters.

Each of the label values should be unique within a switch statement.

switch(expression)

{

 case label1 : block-1;

 break;

 case label2 : block-2;

 break;

 case label3 : block-3;

 break;

 case label4 : block-4;

 break;

 …………

 …………

 case labeln : block-n;

 break;

 default : block;

 break;

}

Statement-x;

62

block-1, block-2... are statements lists and may contain zero or more statements.

There is no need to put braces around these blocks. Note that case labels end with

a colon(:)

When the switch is executed, the values of the expression is successively

compared against the values label1, label2.... if a case is found whose value

matches with the value of the expression, then the block of statements that follows

the case are executed.

The break statement at the end of each block signals the end of a particular

case and causes an exit from the switch statement, transferring the control to

the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value

of the expression does not match with any of the case values. If not present, no

action take place if all matches fail and the control goes to the statement-x.

Ex:-

/* Calculator program using switch case */

#include<stdio.h>

 main()

{

 int a,b,c,n;

 printf(“Enter two no’s\n”);

 scanf(“%d %d”, &a,&b);

 printf(“1.Addition\n2.Substration\n3.Multiplication\n4.Division”);

 scanf(“%d”,&n);

 switch(n)

 {

 case 1:c=a+b; break;

 case 2:c=a-b; break;

 case 3:c=a*b; break;

 case 4:c=a/b; break;

 default: printf(“Invalid Number\n”);

 }

 printf(“%d”,c);

 }

63

REPETITION CONTROL STRUCTURE :

 C provides three repetition structures

1) while loop
2) do-while loop
3) for loop

A loop is a group of instructions the computer executes repeatedly while

some loop-continuation condition remains true.

Repetition control structures are also called as iterative control structures or

looping control structures.

 WHILE LOOP

 The basic format of while loop is

 The while is entry-controlled loop statement. The condition is

evaluated and if the condition is true then the body of the loop is executed. After

execution of the body, the condition is once again evaluated and if it is true, the

body is executed once again. This process of repeated execution of the body

continues until the condition finally becomes false and the control is transferred out

of the loop. On exit, the program continues with the statements. The braces needed

only if the body contains one or more statements.

/* A simple program for while loop */

#include<stdio.h>

main()

{

 int a=1;

While(condition)

{

 body of loop

}

}

64

 while (a>=3)

 {

printf(“a=%d”,a);

a++;

}

printf(“hello”);

 }

OUTPUT: hello

 DO-WHILE LOOP

 The general format of do-while is

 The while loop constructs that we have discussed in the previous section

makes a test of condition before the loop is executed. Therefore, the body of the

loop may not be executed at all if the condition is not satisfied at the very first

attempt. On some occasions it might be necessary to execute the body of the loop

before the test is performed. Such situations can be handled with the help of the do

statement.

 On reaching the do statement, the program proceeds to evaluates the

body of the loop first. At the end of the loop, the condition in the while is evaluated.

If the condition is true, the program continues to evaluates the body of the loop

do

{

 body of loop

}

while(condition);

65

once again. This process continues as long as the condition is true. When the

condition become false, the loop will be terminated and the control goes to the

statement that appears immediately after the while condition.

/* A simple program for do while loop*/

#include<stdio.h>

main()

{

 int a=1;

do

{

printf(“a=%d\n”,a);

a++;

} while (a>=3);

printf(“Hello”);

 }

OUTPUT: 1

 Hello

 FOR LOOP

 The for loop is another entry-controlled loop that provides a more concise

loop control structure.

for(initialization; test-condition; increment)

{

 Statements;

}

66

The execution of the for statement is as follows:

 Initialization of the control variables is done first, using assignment

statements such as i=1 and count=0. The variable i and count are known as
loop-control variables.

 The value of the control variable is tested using the test-condition. The test-

condition is a relational expression, such as i<10 that determines when the

loop will exit. If the condition is true, the body of the loop is executed;
otherwise the loop is terminated and the execution continues with the

statement that immediately followed the loop.

 When the body of the loop is executed, the control is transferred back to the
for statement after evaluating the last statement in the loop. Now, the
control variable is incremented using an assignment statement such as i=i+1

and the new value of the control variable is again tested to see whether it
satisfied the loop condition. If the condition is satisfied, the body of the loop

is again executed. This process continues still the value of the control
variable fails to satisfy the test-condition.

Example:

/* program to demonstrate a simple for loop */

#include<stdio.h>

 main()

 {

 int a;

 for(a=1;a<=10;a++)

 {

 printf(“%d\t”,a);

 }

 getch();

 }

OUTPUT: 1 2 3 4 5 6 7 8 9 10

67

UNCONDITIONAL CONTROL STATEMENTS :

Without testing any condition the floe of program will be altered. There are 3

such statements in c :

1. break

2. continue

3. goto

BREAK statement :

 When the break statement is encountered inside a loop, the loop is immediately

exited and the program continues with the statement immediately following the

loop. When the loops are nested, the break would only exit from the loop

containing it. That is, break will exit only a single loop.

while(---)

{

 if(condition)

 break;

 }

for(----------)

{

 for(-----------)

 {

 if(condition)

 break;

 }

 }

68

Example: #include<stdio.h>

 main()

 {

 int i;

 clrscr();

 for(i=1;i<=10;i++)

 {

 if(i==5)

 break;

 printf("%d\t",i);

 }

 printf(“\nBroke out of the loop at x == %d\n”,x);

 }

OUTPUT: 1 2 3 4

 Broke out of the loop at x==5

CONTINUE statemen :

 When the continue statement is encountered in the loop, as the name implies,

it causes the loop to be continued with the next iteration after skipping any

statements in between. The continue statement tells the compiler, “SKIP THE

FOLLOWING STATEMENTS AND CONTINUE THE NEXT ITERATION”. The

format of the continue statement is

 continue;

 In while and do loops, continue causes the control to go directly to the test-

condition and then to continue the iteration process. In the case of for loop, the

increment section of the loop is executed before the test-condition is evaluated.

69

Example: #include<stdio.h>

 main()

 {

 int i;

 for(i=1;i<=10;i++)

 {

 if(i==5)

 continue;

 printf("%d\t",i);

 }

 printf(“\nUsed continue to skip printing the value 5”,x);

 }

OUTPUT: 1 2 3 4 6 7 8 9 10

 Used continue to skip printing the value 5

while(condition)

{

 if(condition)

 continue;

}

for(init ; test ; Inc)

{

 if(condition)

 continue;

 }

70

GOTO :

It is used to alter the normal flow of control of a program. Goto requires a label in

order to identify the place where the branch is to be made.A label is any valid

variable name and must be followed by colon. The label is to be placed immediately

before the statement where the control is to be transferred.

Syntax: goto label; (for goto)

 label:

{

block of statements; (for label)

}

ex:

void main()

{

 int a=20;

 goto abc; /* here ‘abc’ is the name of the label */

 printf(“going to goto statement”);/*this statement is not executed*/

 abc: printf(“%d”,a); /*when goto statement executes control comes here*/

}

Output: 20

	Example: Hard disk, Compact disks (CDs)
	COMPONENTS OF COMPUTER
	The major components of computer are HARDWARE & SOFTWARE.
	HARDWARE:
	SOFTWARE:
	MACHINE LANGUAGE
	HIGH LEVEL LANGUAGES(HLL)

