
STRUCTURES
Structure is a collection of elements of different data types.

Keyword of structure is  : struct
Note : structures, arrays ,pointers, functions are called as DERIVED DATATYPES since, all 
these will be using fundamental datatypes like   int, char float etc.,,
Uses of structures:

• A structure is  convenient tool for handling a group of logically related data items.
• The concept of structure is analogous to that of a “record” in many other languages.
• Structures help to organize complex data in a more meaningful way that we often need to 

use in our program design.

Syntax of a structure:

Example: 
struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
In the above example, student is called structure-tag.
name[20], rollno, marks, average  are called as  structure elements or members.

struct  student  is like a datatype. Now variables can be declared of this type and access the 
members of structure.

While decalring structure :
Ø Structure template should be terminated with a semi-colon.
Ø Tag-name is used to declare variables for the structure in later part of te program.

1

struct       tag- name
{
     datatype      member 1;
     datatype      member 2;
       : :
     datatype     member n;
 };

Structure template



Declaring variables for the structure :
struct  student
{

char  name[20];
int rollno;
int marks;
float average;

} s1, s2 ;

s1 ,s2  are variables. Now input can be given as :
student-1 : student-2 :
s1.name= “ anand “; s2.name= “ sanjay “
s1.rollno= 102 ; s2.rollno= 134 ;
s1.marks= 555 ; s2.marks= 756 ;
s1.average=68.4; s2.average= 81.3;

operators used with structures :
1. Dot   or   Member operator  ( . ) – used to access members of structure
2. Arrow operator ( -> )  -  used to access the value stored at address of variable

Why to write tag-name for structure ?
Tag-name is optional for a structure.

2

struct  
{

char  name[20];
int rollno;
int marks;
float average;

} s1, s2 ;

We cannot declare 
variables in later part 
of program and can’t 
access the structure 
members.

struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
   struct student  s1,s2 ;
}



Memory  of  a structure :
When ever we declare variables for structure then only memory is allocated for it.

3

struct  student
{

char  name[20];
int rollno;
int marks;
float average;

} ;

No memory 
allocation is 
made.

struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
   struct student  s1,s2 ;
}

(s1)

 20 + 2 + 2 + 4 = 28 bytes 

(s2)

20 + 2 + 2 + 4 = 28 bytes 



Note : 
Ø Memory allocated need not to be continuous for variables s1 and s2.
Ø Structure can be declared before (global ) or after main() ( local )

Assigning  values to structures :

Array of structures
Whenever same structure is to be applied to a group of elements the 
concept of ARRAY OF STRUCTURES is use.

In array of structures, each element is the structure itself.

4

Method-1 :
struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
   struct student  s1 ;
   strcpy( s1.name, “ amith “);
   s1.rollno= 98;
   s1.marks=678;
    s1.avg= 65.78;
}

Method-2 :
struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
  struct student  s1={ “amith”, 98, 678, 65.78 };
}

Method-3 :
struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
struct student  s1;
scanf(“%s %d %d %f”, s1.name, &s1.rollno, &s1.marks, &s1.average);
}



For example,  struct  student  s[60];  defines,  an array called  that 
consists of 60 elements, each element is defined to be of the type  
struct student.

struct  student
{

char  name[20];
int rollno;
int marks;
float average;

};
void main()
{
   struct student  s1[45] ;
}
Now array of structures can be represented as :

 S1[0]  S2[0]  

……………………………………S1[44] 

program to demonstrate array of structures

#include<stdio.h>

struct student
{
char name[20];
int  rollno;
float per;
};

int main( )

5

char  name[20];
int rollno;
int marks;
float average;

char  name[20];
int rollno;
int marks;
float average;

char  name[20];
int rollno;
int marks;
float average;



{
struct student s[60];
int  i;
printf(“enter the student details\n”);
for(i=1;i<=60;i++)
{
scanf(“%s%d%f”,s[i].name,&s[i].rollno,&s[i].per);
}

printf(“student details are\n”);
for(i=1;i<=60;i++)
{
printf(“%s \t %d\t %f\n”s[i].name,s[i].rollno,s[i].per);
}
}

Structures and functions

In functions: 
Ø we pass values as arguments to function.
Ø we pass arrays as arguments to function.

Similarly, structures can also be passed as arguments to functions.

It is done in 3 ways:-
1. Passing individual elements of structure to a function
2. Passing entire structure to function
3. Passing address of structure to function

6



/* Passing individual elements of structure to a function */
#include<stdio.h>

struct student
{
char name[20];
int rollno;
float per;
};

void display(char [],int, float);
int main()
{
struct student s;
printf("enter name rollno and per\n");
scanf("%s%d%f",s.name,&s.rollno,&s.per);
display(s.name,s.rollno,s.per);
print("%s %d %f ",s.name,s.rollno,s.per);
}

void display(char name[],int rollno,float per)
{
strcpy(name,"abc");
rollno=12;
per=90.2;
printf("%s %d %f ",name,rollno,per);
}

In the above program 
Ø We are pasing members to structure individually.
Ø array name it self acts as a base pointer. Modification done to array 

in display() or string will effect to main() also. (refer the output)
Ø When size of structure is large that is, if structure has more number 

of variables then this method is not effective.

/* Passing entire structure to function */

 #include<stdio.h>
struct student
{
char name[20];
int rollno;

7

output:
enter name rollno and per
xyz   10    80.2 
abc   12    90.2
abc   10    80.2



float per;
};

int main()
{
struct student s;
void display(struct student);
printf("enter name rollno and per\n");
scanf("%s%d%f",s.name,&s.rollno,&s.per);
printf("before function call the structure data\n");
print("%s %d %f ",s.name,s.rollno,s.per);
display(s);
printf("after function call the structure data\n");
print("%s %d %f ",s.name,s.rollno,s.per);
}

void display(struct student  s)
{
strcpy(s.name,"abc");
s.rollno=12;
s.per=90.2;
printf("%s %d %f  ",s.name,s.rollno,s.per);
}

/* Passing address of structure to function */
 
struct student
{
char name[20];
int rollno;
float per;
};
int main()
{
struct student s;
void display(struct student * );
printf("enter name rollno and per\n");
scanf("%s %d %f",s.name,&s.rollno,&s.per);

8

output:

enter name rollno and per
xyz    10    80.2
before function call the structure 
data
xyz    10    80.2
abc    12    90.2
after function call the structure 
data
abc    10    80.2



printf("before function call the structure data\n");
print("%s %d %f ",s.name,s.rollno,s.per);
display(&s);
printf("after function call the structure data\n");
print("%s\t%d\t%f\n",s.name,s.rollno,s.per);
}
void display(struct student *p)
{
strcpy(p->name,"abc");
p->rollno=12;
p->per=90.2;
printf("%s %d %f ",p->name,p->rollno,p->per);
}

output:

enter name rollno and per
xyz    10    80.2
before function call the structure data
xyz    10    80.2
abc    12    90.2
after function call the structure data
abc    12    90.2

Self referential structure (NESTED STRUCTURES):

A Structure inside another structure is called as nested structure.
A structure referring to itself is called as Self Referential Structure.
int main()

{

struc t dob

{ 

int d, m, y;

};

struct student 

{

9



char name[20]; 

struct dob b;  // creating variable for “dob” structure 

};

struct  student  a;

printf(“enter name and date of birth:”);

scanf(“%s %d %d %d”,s.n, &s.b.d, &s.b.m, &s.b.y);

printf(“student name =%s\n”,s.n);

printf(“\ndob=%d-%d-%d”, s.b.d,  s.b.m,  s.b.y);

}

Output:

enter name and date of birth:

RAM 5 7 94

student  name =RAM

dob = 5-7-94

C gives us a concept of copying the details of one structure variable to another structure 
variable.  This can be done in 2 ways

1.  Element by element
2. Entire structure in single step

Ex: WAP for copying structure into another structure

int  main( )

struct a

{

 int no; char n[20]; float s;

} e2, e3;

10



struct a e1={a,”sam”,7500}; //initialisation

//First method

e2.no=e1.no

strcpy(e2.n, e1.n);

e2.s=e1.s;

//Second method

e3=e1;

 printf(“first emp \n”);

printf(“no=%d, Name=%s, Sal=%f\n”, e1.no, e1.n, e1.s);

printf(“second emp \n”);

printf(“no=%d, Name=%s, Sal=%f\n”, e2.no, e2.n, e2.s);

printf(“third emp \n”);

printf(“No=%d, Name=%s, Sal=%f”,e3.no, e3.n, e3.s);

}

UNION

Union is another data type with two or more members, similar to structure. 

General form of union: 

union    union_name
{
data type      member 1;
data type      member 2;
     :          :
data type      member n;
} var1, var2;

11



Difference between structure and union:

Structures Unions

1. Structure is a collection of 
elements of different data types.

2. Syntax:
Struct  structure name
{
Datatype    member 1;
Data type   member 2;
     :                    :
Data type   member n;
}var1,var2;

3. Ex:
Struct abc
{
Char   x;
Int       y;
Float   z;
}s;

            <----x---àß---y----àß--z---à
           ß---------6bytes------------------à

4. Each member at structure will 
have its own memory space.

5. We can access all the members 
of a structure at a time.

6. Structure occupies more memory 
compare to union.

1. Union is a collection of elements 
of different data types.

2. Syntax:
Union  union name
{
Datatype    member 1;
Data type   member 2;
     :                    :
Data type   member n;
}var1,var2;

3. Ex:
Union  abc
{
Char   x;
Int       y;
Float   z;
}s;

ß---------z--------------à

              <----x---à
              ß-------y------à
             ß----------4byte--------à

4. All members of union shares 
the  memory space.(allocates 
memory for large enough to 
hold the largest member)

5. Only one member of union can 
be accessed at a time.

6. Union saves memory space.

Union follows the same syntax as structures. But the major difference between structure and 
union is for structures the compiler allocated memory for all members in contiguous memory 
allocation where as in unions it allocate memory of size large enough to hold the largest variable 

12



type in the union.

13


