
STORAGE CLASSES:

All variables will have not only data type, but also a storage class.

In order to define a variable totally, we need to mention both its data type and storage class.

Storage Class of a Variable defines:

i) Where the variable is stored
ii) Default initial value of variable.
iii) Scope of variable i.e, in which functions the variable is available.
iv) What is a life of a variable i.e, how long will the variable exist.

There are 4 types of storage classes in C:

1. Automatic storage classes
2. Register storage classes
3. Static storage classes
4. External storage classes

Inside CPU, 2 types of storage spaces are present
i) memory unit. ii) registers. (limited in number)

a) Automatic storage classes:
Features of a variable having an automatic storage class will be:

Storage à memory

Default initial
value

à garbage value

Scope à Local to the block in which it is defined.

Life à Till the control remains within the block, the variable is
defined.

Keyword à auto

include<stdio.h>void
main()
{
auto int i;
printf(“%d”,i);
}

Output: 1011 (unpredictable/unexpected value if differs from compiler to compiler)

Program to demonstrate scope and life of automatic variable:

main()
{
 auto int i;
{

{
{

printf(“%d”,i);
}
printf(“%d”,i);

}
}

Output: 1 1 1

Reason: in the above program, i is a automatic variable, whose scope is local, to the block, in
which it is defined.

There fore when the control comes out of the block, in which the variable is defined. The variable
and its value are lost.

 main()
{
auto int i=1;

{
auto int i=2;
{

auto int i=3;
printf("%d",i);

}
printf("%d",i);

}
printf("%d",i);

}

 Output:

3 2 1

Reason: Compiler treats 3 i’s as totally different variables, since they are defined in different
blocks.Once control comes out of the inner most block, the variable i with value 3 is lost.
Therefore, i in 2nd printf() statement. Refers to i with value 2. When control comes out of the next

inner most blocks i=2 is lost and 3rd pritnf() statement. Refers to i with value i.

b) Register Storage class:
Features of a variable defined under register storage class are:

Storage à CPU register

Default initial
value

à garbage value

Scope à Local to the block in which variable is defined.

Life à Till the control remains within the block, the variable is
defined.

Keyword à register

A value stored in CPU register, can be accessed faster than a value stored in memeory. If a
variable is to be used at many places/ many times in the program, then it would be better to
declare its storage class as register.

Disadvantage: CPU registers will be limited in number. If all the register of CPU are busy
with some other task, then variable storage class is taken as auto.

#include<stdio.h>
mian()
{
register int i;
for (i=1;i<=10;i++)
printf("%d \t ",i);
}

Output: 1 2 3 4 5 6 7 8 9 10

c) Static Storage Class:
Features of a variable defined with static storage class are:

Storage à Memory

Default initial value à Zero

Scope à Local to the block in which variable is defined.

Life à Till the control remains within the block, the variable
is defined.

Keyword à static

Difference between static and automatic variables is that they don’t disappear, when the
function is not active. Their value exists and when control comes back to same function
again, the static variables have the same values, they had last time.

Ex:

#include<stdio.h>
void increment();
main()
{
increment();
increment();
increment();
}
void inclremnt()
{
static int i=1;
printf("%d",i);
i=i+1;
}

Output: 1 2 3

Reason: In the above program, if we declare variable i as integer and static variable the output will
be 1 2 3.

Ex:

#include<stdio.h>
void increment();
main()
{
increment();
increment();
increment();
}
void inclremnt()
{
auto int i=1;
printf("%d",i);
i=i+1;
}

Output: 1 1 1

Reason: In the above program, when I is of automatic storage class, each time increment() is called,
it will be re-initialized to 1. When function terminates value i=2 will be lost.

Instead of ‘auto’ if we use ‘static’, i will be initialized to 1 only once. During first call of
increment ‘i’ will be 2 and i is of static type, the value will not be lost. Similarly during second
function call of increment(), i will be 3.

d) External Storage Class:
Features of a variable defined with External storage class are:

Storage à Memory

Default initial value à Zero

Scope à Global

Life à As long as execution of program doesn’t come to an
end.

Keyword à Extern

External variables are declared outside the function, So they are available to all the functions
in program.

Ex:

#include<stdio.h>
int i=20;
main()
{
extern int j;
printf("%d",i);
printf("%d",j);
}
int j=40;

Out put: 20 40

Keyword Extern indicates that variable j is defined some where after or outside the main().

Here i and j are global variable. Therefore they are defined outside function, both enjoy external
storage class.

Difference between them is:

extern int j; à Declaration; initially memory is not registered for it.

Int j=40; à Defination

S.No Storage
Classes

Keyword Storage Default
Value

Scope Life Time

1 Automatic Auto CPU Garbage Local à Till the control remains
within the block, the variable
is defined.

2 Register Register Register Garbage Local à Till the control remains
within the block, the variable
is defined.

3 Static Static CPU Zero Local Persist between diff function
calls

4 External Extern CPU Zero Global The variable exits through
out the execution of the
program.

