
FILES

DATA HIERARCHY IN COMPUTER :

Bit (0,1)

Byte (8-bits)

Field (set of bytes)

Record (set of fields)

File (set of records)

INTRODUCTION TO FILES

Using the printf and scanf statements :-
Ø We can read / write a character
Ø We can read / write a string
Ø We can read / write a line of text

• But if we have to give a set of lines as input then we can use gets() function.
• Using the printf and scanf statements we can give input ad display output, but

whenever we exit from the program the contents are automatically erased from RAM.
• If the input contains say 50 lines of text , then after execution the input cannot be

stored.
• If in another program we want to use the same input the we have to type the entire

text again which is very time-consuming.
• In order to avoid this problem we will be using the concept of FILES.

Definition of file : files are set of records, that are used to store large amounts of data

permanently. Usually, contents from RAM are copied into files for further use.

Ex: Consider the below given table

Roll no. Name Percentage Grade
200 Rohan 75 A
201 Rohit 77 A
202 Sam 69 B
203 John 86 A+

In the above table :
Ø Each row is a record

1

Ø Each column is a field
Ø Entire table is a FILE

WHY TO USE FILES ?

Reason-1 : to read multiple lines of data or huge amount of data.
Reason-2 : to store data permanently on secondary storage devices like hard disc.

BASIC OPERATIONS THAT CAN BE PERFORMED ON FILE

1. Creating a file
2. Opening a file
3. Writing data into a file
4. Reading data from the file
5. Closing the file

MODES IN WHICH A FILE CAN BE OPENED

Name of the mode Purpose
w To create a text file. If file already exists the contents are erased.

r Opens the already existing file in read mode

a Opens file for appending data. If the file does not exist, then it is created.

w+ To open a file both in reading and writing modes; if file already exists its
contents will be erased.

r+ To open the existing file in both reading and writing modes.

a+ Opens the file in both reading and writing modes. If file is not present, a
new file is created.

wb To create a binary file in writing mode; if file already exists its contents
will be erased or else a new file is created.

rb To open the existing binary file in reading mode.

ab Opens binary file for appending.

wb+ To open a binary file both in reading and writing modes; if file already
exists its contents will be erased or new file is created.

rb+ To open the existing binary file both in reading and writing modes.

ab+ Opens a binary file for both reading and appending. If file do not exist
then new file is created.

There are two ways to perform file operations in c :
i. Low –level I/O functions
ii. High-level I/O functions

2

Some of the high-level i/o functions in ‘ c ‘ are :

Function name Operation
fopen() Creates/opens file
fclose() Closes the file
getc() Reads character from a file
putc() Writes character into file

fprintf() Writes set of characters into file
fscanf() Reads set of characters from file
getw() Reads integer from a file
putw() Writes an integer to a file

Creating ,opening and closing a file :

To create file syntax is :

FILE *fp; // fp means file pointer….any variable can be used

To open file syntax is :

fp = fopen(“ file name “, “mode”);

a string or set of characters with any valid file extension can given as file name.

Note : FILE is a predefined structure in stdio.h which is accessed by using a pointer- variable.

Closing a file :

To close file syntax is : fclose(fp);

Program to perform read / write operations on file

int main()
{
FILE *fp;

3

char c;
fp = fopen(“abc.txt”,”w”);

while((c = getchar()) != EOF)
{

Putc(c, fp);

 }

fclose(fp);

fp = fopen(“abc.txt”,”w”);

while((c = getc(fp)) != EOF)
{

Putchar(c);
}

fclose(fp);

}

TYPES OF FILES

1. Sequential access files
2. Random access files

Sequential access files:-

In this records can be accessed one-by-one in order.

fprintf()…..writes data into the file
syntax: fprintf(file pointer, “format specifier” ,list of variables);

fscanf()…… reads data from the file
syntax: fscanf(file pointer, “format specifier”, address of variables);

program for sequential copying a file

int main()
{
 Char ch;

4

For writing data into
the file.

For displaying data of
the file.

int f=1;
FILE *fp1,*fp2;
fp1= fopen(“x.txt”,”w”);
puts(“enter text”);
while((ch=getchar())!= EOF)
{
 Putc(ch , fp1);
}
 fclose(fp1);

fp1= fopen(“x.txt”,”r”);
fp2= fopen(“y.txt”,”w”);
while((ch=getc(fp))!= EOF)
{
 Putc(ch , fp2);
}
fclose(fp2);
}

Program for sequential comparision a file

int main()
{
 Char ch, k;

5

Writing data into a file

Copying the contents of one file into
another.

int f=1;
FILE *fp1,*fp2;
fp1= fopen(“x.txt”,”w”);
puts(“enter text”);
while((ch=getchar())!= EOF)
{
 Putc(ch , fp1);
}
fclose(fp1);

fp1= fopen(“y.txt”,”w”);
puts(“enter text”);
while((k=getchar())!= EOF)
{
 Putc(k , fp2);
 }

 fclose(fp2);

While(!feof(fp1) || !feof(fp2))
{
 if(getc(fp1) != getc(fp2))
 {
 f= -1;
 break;
 }
}
if(f == 1)
puts (“equal”);
else
puts(“not equal“);
fclose(fp1);
fclose(fp2);
 }

6

Writing data into a file-1

Writing data into a file-2

Comparision of two files

