OPERATOR OVERLOADING

The mechanism of giving a different meaning to an operator is known as
operator overloading.

Operator overloading is done by using a special member function called as
“OPERATOR” function.

Syntax of operator function:
return_type classname:: operator op(arguments)

{

Block of Statements;

}

op means the operator that is to be overloaded.

Types of operators which can be overloaded are:
1. Unary operators
2. Binary operators
3. Special operators
4. Insertion and extraction operators

Unary operators are operators that act upon only single operand.
Example: ++, - -, -

Binary operators are operators acting upon two operands
Example: +, /.%,<,> etc.,

Operators like new,delete,(,),[,] etc., are special operators.

>> and << are extraction and insertion operators.

The operations which cannot be overloaded are:

Scope resolution operator (::)
Ternary operator(?:)

Size of operator

Member access operator(.)

iRk WINR

Indirection operator(.*)

PROGRAM FOR UNARY OPERATOR OVERLOADING

#include<iostream>
using namespace std;
class unary

{

int a,b;

public:

void get();

void display();

void operator -();

|3

void unary::get()

{

cout<<"enter the values of a and b"<<"\n";
cin>>a>>b;

}

void unary:: display()

{

cout<<"a="<<a<<" b= "<<b<<end]
}

void unary::operator -()
{

a=-a;

b=-b;

}

main()

{

unary uf,;

ul.get();

ul.display();
-ut;
ul.display();
¥

PROGRAM FOR CREATION OF COMPLEX CLASS WITH OPERATOR OVERLOADING
(binary operator overloading)

#include<iostream>
using namespace std;
class complex

{

float x,y;

public:

complex()

{
x=0;
y=0;
}

complex(float r, float i)

A
1l

complex operator +(complex);

void display()
{

cout<<x<<" "<<y<<end|;

}

complex complex:: operator +(complex C)
{

complex t;

t.x=x+C.x;

t.y=y+C.y;

return(t);

}

main()

{

complex ¢1(2.6,3.6),c2(4.6,5.6),c3;
c3=c1+c2;

c1. display();

c2.display();

c3.display();

}

RULES FOR OPERATOR OVERLOADING

Only existing opearators can be overloaded.New opearators can not be created
the overload opearator must have at least on operand that is of user defined type

we can not change the basic meaning of an operator i.e we can not use + for
subtraction

overload operators follow the syntax rules of the orginal opearators.they cannot
be overriden.

sizeof,.(membership opearator),. *(pointer to member opearator) ,:: (scope
resolution operator),?: (conditional operator) can’t be overloaded.

=(assignment operator), ()(function call operator),[] (subscripting operator),->
(class member access operator) can’t be overloaded using friend functions.

Unary operators,overloaded by means of a member function take no explicit
arguments and return no explicit values,but, those overloaded by means of a
friend function, take one referenece argument(the object of the relvant class).

Binary operators overloaded through a member function function take one
explicit argument and those which are overloaded through a friend function take
2 explicit arguments.

When using binary operators overloaded through a member function, the left
hand operand must be an object of the relvant class.

*

Binary arithmetic operator such as +,-,*,and / must explicitly return a value.They
must not attempt to change their own arguments.

* Operator overloading can be done using friend function also

Overloading Insertion and extraction operator using friend function.

C++ is able to input and output the built-in data types using the stream extraction
operator >> and the stream insertion operator <<. The stream insertion and stream
extraction operators also can be overloaded to perform input and output for user-
defined types like an object.

Here, it is important to make operator overloading function a friend of the class
because it would be called without creating an object.

Following example explains how extraction operator >> and insertion operator
<<,

o #include <iostream>

o using namespace std;

o class Distance

o {

o private:

o int feet; // 0 to infinite
o int inches; // 0 to 12

o public:

o // required constructors

o Distance () {

o feet = 0;

o inches = 0;

o }

o Distance (int £, int 1) {

o feet = £;

o inches = i;

o }

o friend ostream &operator<<(ostream &output,

const Distance &D)

output << "F : " << D.feet << " I : " << D.inches;
return output;

friend istream &operator>>(istream &input, Distance &D

{
input >> D.feet >> D.inches;
return input;

bi
int main ()
{
Distance D1 (11, 10), D2(5, 11), D3;

cout << "Enter the value of object : " << endl;
cin >> D3;

cout << "First Distance : " << D1 << endl;

cout << "Second Distance :" << D2 << endl;

cout << "Third Distance :" << D3 << endl;

return 0;

