
OPERATOR OVERLOADING

Ø The mechanism of giving a different meaning to an operator is known as
operator overloading.

Ø Operator overloading is done by using a special member function called as
“OPERATOR” function.

Syntax of operator function:
return_type classname:: operator op(arguments)
{
 Block of Statements;
}

Ø op means the operator that is to be overloaded.

Ø Types of operators which can be overloaded are:
1. Unary operators
2. Binary operators
3. Special operators
4. Insertion and extraction operators

Ø Unary operators are operators that act upon only single operand.
Example: ++, - -, -

Ø Binary operators are operators acting upon two operands
Example: +, /.%,<,> etc.,

Ø Operators like new,delete,(,),[,] etc., are special operators.
Ø >> and << are extraction and insertion operators.

The operations which cannot be overloaded are:

1. Scope resolution operator (::)
2. Ternary operator(?:)
3. Size of operator
4. Member access operator(.)
5. Indirection operator(.*)

1

PROGRAM FOR UNARY OPERATOR OVERLOADING

#include<iostream>
using namespace std;
class unary
{
int a,b;
public:
void get();
void display();
void operator -();
};

void unary::get()
{
cout<<"enter the values of a and b"<<"\n";
cin>>a>>b;
}
void unary:: display()
{
cout<<"a= "<<a<<" ,b= "<<b<<endl;
}

void unary::operator -()
{
a=-a;
b=-b;
}
main()
{
unary u1;
u1.get();

2

u1.display();
-u1;
u1.display();
}

PROGRAM FOR CREATION OF COMPLEX CLASS WITH OPERATOR OVERLOADING
(binary operator overloading)

#include<iostream>
using namespace std;
class complex
{
float x,y;
public:

complex()
{
x=0;
y=0;
 }

complex(float r, float i)
{
x=r;
y=i;
}

 complex operator +(complex);

void display()
{
cout<<x<<" "<<y<<endl;
}

3

};

complex complex:: operator +(complex C)
{
complex t;
t.x=x+C.x;
t.y=y+C.y;
return(t);
}

main()
{
complex c1(2.6,3.6),c2(4.6,5.6),c3;
c3=c1+c2;
c1. display();
c2.display();
c3.display();
}

 RULES FOR OPERATOR OVERLOADING

§ Only existing opearators can be overloaded.New opearators can not be created

§ the overload opearator must have at least on operand that is of user defined type

§ we can not change the basic meaning of an operator i.e we can not use + for
subtraction

§ overload operators follow the syntax rules of the orginal opearators.they cannot
be overriden.

§ sizeof,.(membership opearator),. *(pointer to member opearator) ,:: (scope
resolution operator),?: (conditional operator) can’t be overloaded.

§ =(assignment operator), ()(function call operator),[] (subscripting operator),->
(class member access operator) can’t be overloaded using friend functions.

4

§ Unary operators,overloaded by means of a member function take no explicit
arguments and return no explicit values,but, those overloaded by means of a
friend function, take one referenece argument(the object of the relvant class).

§ Binary operators overloaded through a member function function take one
explicit argument and those which are overloaded through a friend function take
2 explicit arguments.

§ When using binary operators overloaded through a member function, the left
hand operand must be an object of the relvant class.

§ Binary arithmetic operator such as +,-,*,and / must explicitly return a value.They
must not attempt to change their own arguments.

• Operator overloading can be done using friend function also

Overloading Insertion and extraction operator using friend function.

C++ is able to input and output the built-in data types using the stream extraction
operator >> and the stream insertion operator <<. The stream insertion and stream
extraction operators also can be overloaded to perform input and output for user-
defined types like an object.

§ Here, it is important to make operator overloading function a friend of the class
because it would be called without creating an object.

§ Following example explains how extraction operator >> and insertion operator
<<.

• #include <iostream>

• using namespace std;

•

• class Distance

• {

• private:

• int feet; // 0 to infinite

• int inches; // 0 to 12

• public:

• // required constructors

• Distance(){

• feet = 0;

• inches = 0;

• }

• Distance(int f, int i){

• feet = f;

• inches = i;

• }

• friend ostream &operator<<(ostream &output,

5

• const Distance &D)

• {

• output << "F : " << D.feet << " I : " << D.inches;

• return output;

• }

•
• friend istream &operator>>(istream &input, Distance &D)

• {

• input >> D.feet >> D.inches;

• return input;

• }

• };

• int main()

• {

• Distance D1(11, 10), D2(5, 11), D3;

•
• cout << "Enter the value of object : " << endl;

• cin >> D3;

• cout << "First Distance : " << D1 << endl;

• cout << "Second Distance :" << D2 << endl;

• cout << "Third Distance :" << D3 << endl;

•
•
• return 0;

• }

6

