
Inheritance:- It is a technique by which we can define a new class on the

bases of some existing class. The existing class is known as base class that

is super class and the new class is known as derived class that is sub class.

The mechanism that allows us to extend the definition of a class without

making any physical changes to the existing class is inheritance.

Inheritance lets you create new classes from existing class. Any new class

that you create from an existing class is called derived class; existing

class is called base class.

The inheritance relationship enables a derived class to inherit features from

its base class. Furthermore, the derived class can add new features of its

own. Therefore, rather than create completely new classes from scratch, you

can take advantage of inheritance and reduce software complexity.

• Reusability is the basic concept of inheritance.
• In this concept, properties of one class will be extended by another class.
• A class whose properties are inherited is said to be base-class/ parent-class/

super-class.
• A class which inherits/ extends properties of another class is called as derived-

class/ child-class/ sub-class.

Syntax:

New class <class name> : visibility mode <existing class>, visibility mode

<existing class>

There are five types of Inheritance

1).Single Inheritance: It is the inheritance hierarchy wherein one derived

class inherits from one base class.

2).Multiple Inheritance: It is the inheritance hierarchy wherein one derived

class inherits from multiple base class(es)

3).Hierarchical Inheritance: It is the inheritance hierarchy wherein multiple

subclasses inherit from one base class.

4).Multilevel Inheritance: It is the inheritance hierarchy wherein subclass

acts as a base class for other classes.

5).Hybrid Inheritance: The inheritance hierarchy that reflects any legal

combination of other four types of inheritance.

Advantage of Inheritance:-

1.Reusability
2.Less time required (time saving)
3. Easy to debug

Single inheritance

#include<iostream>

class ABC

{

 char name[20];

 int age;

};

class abc : public ABC

{

 float height;

 float weight;

 public:

 void getdata()

 {

 cout<<”enter name and age “;

 cin>>name>>age;

 cout<<”enter height and weight “;

 cin>>height>>weight;

 }

 void show()

 {

 cout<<”name=”<<name<<endl;

 cout<<”age=”<<age<<endl;

 cout<<”height=”<<height<<endl;

 cout<<”weight=”<<weight<<endl;

 }

};

main()

{

 abc x;

 x.getdata();

 x.show();

}

Multiple inheritance

#include<iostream>

using namespace std’

class A

{

 int a;

};

class B

{

 int b;

};

class C

{

 int c;

};

class D : public A, B, C

{

 int d;

 void getdata()

 {

 cout<<”enter values of a,b,c,d\n”;

 cin>>a>>b>>c>>d;

 }

 void show()

 {

 cout<<”a=”<<a<<endl;

 cout<<”b=”<<b<<endl;

 cout<<”c=”<<c<<endl;

 cout<<”d=”<<d<<endl;

 }

};

main()

{

 D x;

 x.getdata();

 x.show();

}

multi-level inheritance

#include<iostream>

using namespace std;

class A

{

 public:

 void display1()

 {

 cout<<”hello”<<endl;

 }

};

class B :public A

{

 public:

 void display2()

 {

 cout<<”world”<<endl;

 }

};

Class C: public B

{

 public:

 void display3()

 {

 cout<<”hai”;

 }

};

main()

{

 C c1;

 C1.diaplay1();

 C1.display2();

}

hierarchical inheritance

#include<iostream>

using namespace std;

class A

{

 public:

 void display1()

 {

 cout<<”hello”<<endl;

 }

};

class B :public A

{

 public:

 void display2()

 {

 cout<<”world”<<endl;

 }

};

class C: public A

{

 public:

 void display3()

 {

 cout<<”hai”;

 }

};

main()

{

 B b1;

 b1.display1();

 b1.display2();

 C c1;

 c1.display1();

 c1.display3();

}

hybrid inheritance

#include<iostream>

using namespace std;

class A

{

 public:

 void display1()

 {

 cout<<”hello”<<endl;

 }

};

class B :public A

{

 public:

 void display2()

 {

 cout<<”world”<<endl;

 }

};

class C

{

 public:

 void display3()

 {

 cout<<”hai”;

 }

};

class D:public B, public C

{

 public:

 void display4()

 {

 cout<<”bye”;

 }

};

main()

{

 D d1;

 d1.display1();

 d1.display2();

 d1.display3();

 d1.display4();

}

Access Control and Inheritance:

A derived class can access all the non-private members of its base class.

Thus base-class members that should not be accessible to the member functions

of derived classes should be declared private in the base class.

We can summarize the different access types according to who can access them

in the following way:

Access public protected private

Same class yes yes yes

Derived

classes
yes yes no

Outside

classes
yes no no

A derived class inherits all base class methods with the following

exceptions:

• Constructors, destructors and copy constructors of the base class.

• Overloaded operators of the base class.

• The friend functions of the base class.

Type of Inheritance:

When deriving a class from a base class, the base class may be inherited

through public, protected orprivate inheritance. The type of inheritance is

specified by the access-specifier as explained above.

We hardly use protected or private inheritance, but public inheritance is

commonly used. While using different type of inheritance, following rules are

applied:

• Public Inheritance: When deriving a class from a public base

class, public members of the base class become public members of the derived

class and protected members of the base class become protected members of

the derived class. A base class's private members are never accessible

directly from a derived class, but can be accessed through calls to

the public andprotected members of the base class.

• Protected Inheritance: When deriving from a protected base

class, public and protectedmembers of the base class

become protected members of the derived class.

• Private Inheritance: When deriving from a private base

class, public and protected members of the base class become private members

of the derived class.

