
INTRODUCTION TO CPP

PROGRAM: is defined as set of instructions

PROGRAMMING: is the art of writing programs.

PROGRAMMING METHODOLOGIES are classified into 2 types:

1. PROCEDURE ORIENTED PROGRAMMING (POP)
2. OBJECT ORIENTED PROGRAMMING (OOP)

Procedure oriented programming Vs. Object oriented programming

• In POP, importance is given to the sequence of things to be done i.e.
algorithms and in OOP, importance is given to the data.

• In POP, larger programs are divided into functions and in OOP, larger
programs are divided into objects.

• POP follows a top down approach in problem solving while OOP follows a
bottom up approach.

• In POP, there is no access specifier and in OOP there are public, private
and protected specifier.

• In POP, operator cannot be overloaded and in OOP operator can be
overloaded.

• In POP, Data moves openly around the system from function to function,
In OOP objects communicate with each other through member functions

• COBOL, PASCAL, C, FORTRAN are some of the examples of POP
languages.

• C++, JAVA are some of the examples of OOP languages.

Advantages of POP:

Ø Easy to read the code since functions are used and also it is easy to debug
the code.

Disadvantages of POP:

Ø Code reusability is not permitted.
Ø No security for global data.

Ø Since no code reusability is there, the size of program will keep on increasing.
As a result at a particular point the programmer looses the control over the
code that is, flow of execution of code cannot be understood.

Benefits of OOPL:

Ø Inheritance can eliminate redundancy of code and provide reusability.
Ø Data hiding helps to built secure programs
Ø Easy to partition a task into object
Ø Data central design approach enables us to capture more details of a

model in implemented form.

 Why we go for OOPS…?

 Because this is an implementation over structure programming.

 Advantages of OOPS:

Ø Extendibility increases
Ø Reusability increases

HISTORY OF C++ :

C++ is an Object Oriented Programming Language. It was
developed by Bjarne Stroustrup at AT and T Bell Labs during 1980’s. C++
is an extension of C with major addition of all object oriented features.
Stroustrup initially called C++ as "C with Classes". C++ is a suoperset
of C. therefore all the programs in C are also written in C++. He had
combined the Simula's use of classes and object-oriented features with
the power and efficiency of C. The term C++ was first used in 1983.

PROPERTIES OF OOPS

1) OBJECT
2) CLASS
3) ABSTRACTION
4) ENCAPSULATION
5) INHERITANCE
6) POLYMORPHISM
7) DYNAMIC BINDING
8) MESSAGE PASSING

OBJECT:

Ø Anything that exists in the real world is said to be object
Ø An object may be a name of person, place or thing etc.,,
Ø Every object will have some property and behavior.
Ø Object is a variable of type class.

CLASS:
Ø Class is a collection of objects
Ø Class is a common name given to a group of objects
Ø For example: IT is name of class. Each and every student present in IT class

is said to be a object.
Ø In computer terminology class is called as collection of data and functions.
Ø Properties of object are represented by data (variables)
Ø Behaviour of object is represented by functions of the class.

Example:

1. Consider “student” as object

Properties of student: name, roll no, marks, height.weight, gender,color etc.,,

Behavior of student: writing, reading, listening etc.,,

2.

objects class
Apple, mango,grapes,orange etc.,, fruit

Pink,blue,black,yellow etc.,, color
DATA ABSTRACTION:

Ø The act of representing essential features with out including back ground
details (Hiding the actual content and showing only the required content is
said to be abstraction).

Ø Example: index of text book, google search engine etc.,,
Ø Advantage of abstraction is every user will get his/her own view of the data.

DATA ENCAPSULATION:

Ø Wrapping (combining) up of data and function into a single unit is called as
encapsulation.

Ø Data will be not accessible to external classes. Only those functions that are
present in that class can access that data.

INHERITANCE:

• One class using the properties of another class is said to be inheritance.
Ex: parents - children

• Code reusability is achieved through inheritance
• Class whose properties are used by other class is called as BASE CLASS.
• Class which uses the properties of other class is said to be DERIVED CLASS.

PLOYMORPHISM

Ø Ability to take more than one form is said to be polymorphism.
Ø POLY means MANY
Ø MORPHISM means FORMS

Ø Example:

I. + is used for addition and concatination
II. * is used for multiplication and also for declaring a pointer variable
III. >> and << are used for right and left shift of bit operations and also along

with cin and cout in CPP.

DYNAMIC BINDING

Ø Link between function call and function procedure is made at run- time.
Ø Dynamic binding is also called as late binding or run-time binding.

MESSAGE PASSING:

Ø In OOP, set of objects communicate with each other.

Structure of C++:

1. Include files
2. Class declaration
3. Member functions
4. Definitions
5. Main function program

COUT & CIN

Ø cout is used to print data on the screen.
Ø cin is used to accept values at run-time.

//Simple Program (Program to add two integers)

#include<iostream>
using namespace std;
main()

{
int a,b,c;

 cout<<"enter 2 integers";
cin>>a>>b;
cout<<(a+b);

}

Note:
Iostream file : This directive causes the pre-processor to add the contents
of iostream to the program . it contains declaration for identifiers. Cout and
operator << and cin and operator >>.

Ø Using >> or << more than one time in a statement is known as CASCADING.
Ø Example: cout<<a<<b; or cin>>a>>b;

Ø << is called as insertion operator, which is used to insert values on the console(
output screen)

Ø >> is called as extraction operator, which is used to extract values from key board

Ø DATA TYPES, VARIABLES, KEYWORDS, CONTROL STRUCTURES, OPERATORS etc.,,
which are used in C are also applicable in CPP also.

Ø Apart from the 32 keywords in C we have some more keywords in CPP.

INLINE FUNCTION:

 An inline is a function i.e, expanded in line when it is invoked (called) i.e., the
compiler replaces the function call with the corresponding function code.
Syntax :

inline datatyope function name(arg list)
{
Block of statements;
}

Example:
#include<iostream>
using namespace std;

inline square(int h)
{

return h*h;
}

main()
{

cout<< square(5);
}

output: 25

Ø In the above code when function call is made that is when square(5) is
executed by compiler the function definition will be replaces the function call.

Ø This happens when a function is preceded by the keyword “inline”
Ø Advantage of inline function is that control of the program will be with main()

only.
Ø Disadvantage is for each function call a separate copy of function definition is

created in memory.

Note:
Ø Inline function may not work if it contains any loop (s),switch,goto,static

varibles.
Ø Inline function cant be recurive.
Ø member function defined inside the class are inline

REFERENCE VARIABLE

Ø A variable which is used to provide an alternative name for a previously defined
variable is called as REFERENCE VARIABLE.

Ø reference is a substitute for an object.
Ø (ampersand) & operator is used before the name of the variable.

Syntax : datatype &referencevar_name=var_name;

Example:
int x=10;
int &y=x;
cout<<x; //10
cout<<y; //10

REFERENCE TO A REFERNCE:
int x=10;
int &y=x;
int &m=y;
int &k=m;
cout<<x; //10
cout<<y; //10
cout<<m; //10
cout<<k //10

it is not possible to assign a different value for a reference variable

Achieving Call by reference through reference parameter (variable):

Void function(int &);
main()
{
int a=20;
function(a);
cout<<a;
}
void function (int &b) // b is pointing to the same location where a points
{
b=b+10; output:
} 30

UNARY SCOPE RESOLUTION OPERATOR (::)

Ø If the name of local and global variables is same then to differentiate both of
them we use unary scope resolution operator.

Ø Scope resolution operator is denoted by ::

Using unary scope resoulation operator, we can able to access the global variables
when they have been hidden by the local variables of the same name in local
scope.

Syntax : :: VariableName ;

Example:

#include<iostream>
using namespace std;
int m=10; //global variable
main()
{

int m=20;

cout<<m; //20
cout<< ::m; //10

}

Ø In the above ‘m’ is decalred as both local and global variable.
Ø ‘m’ refers to local value that is 20.
Ø ‘::m’ refers to global value that is 10.

